45
2

A tree-based radial basis function method for noisy parallel surrogate optimization

Abstract

Parallel surrogate optimization algorithms have proven to be efficient methods for solving expensive noisy optimization problems. In this work we develop a new parallel surrogate optimization algorithm (ProSRS), using a novel tree-based "zoom strategy" to improve the efficiency of the algorithm. We prove that if ProSRS is run for sufficiently long, with probability converging to one there will be at least one point among all the evaluations that will be arbitrarily close to the global minimum. We compare our algorithm to several state-of-the-art Bayesian optimization algorithms on a suite of standard benchmark functions and two real machine learning hyperparameter-tuning problems. We find that our algorithm not only achieves significantly faster optimization convergence, but is also 1-4 orders of magnitude cheaper in computational cost.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.