ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.00103
6
8

Learning Effective Loss Functions Efficiently

28 June 2019
Matthew J. Streeter
ArXivPDFHTML
Abstract

We consider the problem of learning a loss function which, when minimized over a training dataset, yields a model that approximately minimizes a validation error metric. Though learning an optimal loss function is NP-hard, we present an anytime algorithm that is asymptotically optimal in the worst case, and is provably efficient in an idealized "easy" case. Experimentally, we show that this algorithm can be used to tune loss function hyperparameters orders of magnitude faster than state-of-the-art alternatives. We also show that our algorithm can be used to learn novel and effective loss functions on-the-fly during training.

View on arXiv
Comments on this paper