ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1205.6326
  4. Cited By
A Framework for Evaluating Approximation Methods for Gaussian Process
  Regression

A Framework for Evaluating Approximation Methods for Gaussian Process Regression

29 May 2012
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
    GP
ArXivPDFHTML

Papers citing "A Framework for Evaluating Approximation Methods for Gaussian Process Regression"

42 / 42 papers shown
Title
Efficient dynamic modal load reconstruction using physics-informed Gaussian processes based on frequency-sparse Fourier basis functions
Gledson Rodrigo Tondo
I. Kavrakov
Guido Morgenthal
52
2
0
13 Mar 2025
Scalable Random Feature Latent Variable Models
Scalable Random Feature Latent Variable Models
Ying Li
Zhidi Lin
Yuhao Liu
Michael Minyi Zhang
Pablo Martínez Olmos
P. Djuric
BDL
DRL
30
0
0
23 Oct 2024
A Framework of Zero-Inflated Bayesian Negative Binomial Regression
  Models For Spatiotemporal Data
A Framework of Zero-Inflated Bayesian Negative Binomial Regression Models For Spatiotemporal Data
Qing He
Hsin-Hsiung Huang
13
4
0
06 Feb 2024
Leveraging Locality and Robustness to Achieve Massively Scalable
  Gaussian Process Regression
Leveraging Locality and Robustness to Achieve Massively Scalable Gaussian Process Regression
Robert Allison
Anthony Stephenson
F. Samuel
Edward O. Pyzer-Knapp
UQCV
17
3
0
26 Jun 2023
Query-Efficient Black-Box Red Teaming via Bayesian Optimization
Query-Efficient Black-Box Red Teaming via Bayesian Optimization
Deokjae Lee
JunYeong Lee
Jung-Woo Ha
Jin-Hwa Kim
Sang-Woo Lee
Hwaran Lee
Hyun Oh Song
AAML
19
23
0
27 May 2023
A Global-Local Approximation Framework for Large-Scale Gaussian Process
  Modeling
A Global-Local Approximation Framework for Large-Scale Gaussian Process Modeling
Akhil Vakayil
Roshan Joseph
23
2
0
17 May 2023
Query-Efficient and Scalable Black-Box Adversarial Attacks on Discrete
  Sequential Data via Bayesian Optimization
Query-Efficient and Scalable Black-Box Adversarial Attacks on Discrete Sequential Data via Bayesian Optimization
Deokjae Lee
Seungyong Moon
Junhyeok Lee
Hyun Oh Song
AAML
15
38
0
17 Jun 2022
Forward variable selection enables fast and accurate dynamic system
  identification with Karhunen-Loève decomposed Gaussian processes
Forward variable selection enables fast and accurate dynamic system identification with Karhunen-Loève decomposed Gaussian processes
Kyle Hayes
Michael W. Fouts
Ali Baheri
D. Mebane
27
0
0
26 May 2022
Adaptive Cholesky Gaussian Processes
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
22
3
0
22 Feb 2022
Scalable3-BO: Big Data meets HPC - A scalable asynchronous parallel
  high-dimensional Bayesian optimization framework on supercomputers
Scalable3-BO: Big Data meets HPC - A scalable asynchronous parallel high-dimensional Bayesian optimization framework on supercomputers
Anh Tran
6
0
0
12 Aug 2021
Kernel-Matrix Determinant Estimates from stopped Cholesky Decomposition
Kernel-Matrix Determinant Estimates from stopped Cholesky Decomposition
Simon Bartels
Wouter Boomsma
J. Frellsen
Damien Garreau
24
4
0
22 Jul 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with
  Categorical Factors
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
30
25
0
26 Jun 2021
Gaussian Processes with Skewed Laplace Spectral Mixture Kernels for
  Long-term Forecasting
Gaussian Processes with Skewed Laplace Spectral Mixture Kernels for Long-term Forecasting
Kai Chen
Twan van Laarhoven
E. Marchiori
AI4TS
31
8
0
08 Nov 2020
Aggregating Dependent Gaussian Experts in Local Approximation
Aggregating Dependent Gaussian Experts in Local Approximation
Hamed Jalali
Gjergji Kasneci
14
4
0
17 Oct 2020
A Bayesian Nonparametric Analysis of the 2003 Outbreak of Highly
  Pathogenic Avian Influenza in the Netherlands
A Bayesian Nonparametric Analysis of the 2003 Outbreak of Highly Pathogenic Avian Influenza in the Netherlands
Rowland G. Seymour
T. Kypraios
P. O’Neill
T. Hagenaars
4
5
0
09 Sep 2020
Examining the Role of Mood Patterns in Predicting Self-Reported
  Depressive symptoms
Examining the Role of Mood Patterns in Predicting Self-Reported Depressive symptoms
L. L. Chen
Walid Magdy
H. Whalley
M. Wolters
13
11
0
14 Jun 2020
Fast increased fidelity approximate Gibbs samplers for Bayesian Gaussian
  process regression
Fast increased fidelity approximate Gibbs samplers for Bayesian Gaussian process regression
Kelly R. Moran
M. Wheeler
16
4
0
11 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
37
14
0
08 Jun 2020
aphBO-2GP-3B: A budgeted asynchronous parallel multi-acquisition
  functions for constrained Bayesian optimization on high-performing computing
  architecture
aphBO-2GP-3B: A budgeted asynchronous parallel multi-acquisition functions for constrained Bayesian optimization on high-performing computing architecture
Anh Tran
J. Furlan
T. Wildey
S. McCann
K. Pagalthivarthi
R. Visintainer
14
9
0
20 Mar 2020
Development of modeling and control strategies for an approximated
  Gaussian process
Development of modeling and control strategies for an approximated Gaussian process
Shisheng Cui
Chia-Jung Chang
18
0
0
12 Feb 2020
Conjugate Gradients for Kernel Machines
Conjugate Gradients for Kernel Machines
Simon Bartels
Philipp Hennig
16
4
0
14 Nov 2019
A Low Rank Gaussian Process Prediction Model for Very Large Datasets
A Low Rank Gaussian Process Prediction Model for Very Large Datasets
R. Rivera
17
1
0
09 Jun 2019
Wireless Traffic Prediction with Scalable Gaussian Process: Framework,
  Algorithms, and Verification
Wireless Traffic Prediction with Scalable Gaussian Process: Framework, Algorithms, and Verification
Yue Xu
Feng Yin
Wenjun Xu
Jiaru Lin
Shuguang Cui
27
99
0
13 Feb 2019
Large-scale Heteroscedastic Regression via Gaussian Process
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
Yew-Soon Ong
Jianfei Cai
BDL
19
26
0
03 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big
  Data
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
21
24
0
03 Nov 2018
Multi-Output Convolution Spectral Mixture for Gaussian Processes
Multi-Output Convolution Spectral Mixture for Gaussian Processes
Kai Chen
Twan van Laarhoven
P. Groot
Jinsong Chen
E. Marchiori
14
11
0
07 Aug 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
11
681
0
03 Jul 2018
A Data-Driven Approach to Dynamically Adjust Resource Allocation for
  Compute Clusters
A Data-Driven Approach to Dynamically Adjust Resource Allocation for Compute Clusters
Francesco Pace
Dimitrios Milios
D. Carra
D. Venzano
Pietro Michiardi
6
4
0
01 Jul 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian
  Process Regression
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
12
83
0
03 Jun 2018
Approximating multivariate posterior distribution functions from Monte
  Carlo samples for sequential Bayesian inference
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference
B. Thijssen
L. Wessels
35
8
0
12 Dec 2017
Cluster-based Kriging Approximation Algorithms for Complexity Reduction
Cluster-based Kriging Approximation Algorithms for Complexity Reduction
Bas van Stein
Hao Wang
W. Kowalczyk
M. Emmerich
Thomas Bäck
33
45
0
04 Feb 2017
Overlapping Cover Local Regression Machines
Overlapping Cover Local Regression Machines
Mohamed Elhoseiny
Ahmed Elgammal
36
0
0
05 Jan 2017
Exploring Prediction Uncertainty in Machine Translation Quality
  Estimation
Exploring Prediction Uncertainty in Machine Translation Quality Estimation
Daniel Beck
Lucia Specia
Trevor Cohn
UQLM
13
18
0
30 Jun 2016
Preconditioning Kernel Matrices
Preconditioning Kernel Matrices
Kurt Cutajar
Michael A. Osborne
John P. Cunningham
Maurizio Filippone
18
72
0
22 Feb 2016
System Identification through Online Sparse Gaussian Process Regression
  with Input Noise
System Identification through Online Sparse Gaussian Process Regression with Input Noise
Hildo Bijl
Thomas B. Schon
J. Wingerden
M. Verhaegen
30
41
0
29 Jan 2016
Gaussian Process Random Fields
Gaussian Process Random Fields
David A. Moore
Stuart J. Russell
GP
17
19
0
31 Oct 2015
Kernel Interpolation for Scalable Structured Gaussian Processes
  (KISS-GP)
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
32
508
0
03 Mar 2015
Distributed Gaussian Processes
Distributed Gaussian Processes
M. Deisenroth
Jun Wei Ng
GP
24
340
0
10 Feb 2015
Fast Direct Methods for Gaussian Processes
Fast Direct Methods for Gaussian Processes
Sivaram Ambikasaran
D. Foreman-Mackey
L. Greengard
D. Hogg
M. O’Neil
46
378
0
24 Mar 2014
Robust and Scalable Bayes via a Median of Subset Posterior Measures
Robust and Scalable Bayes via a Median of Subset Posterior Measures
Stanislav Minsker
Sanvesh Srivastava
Lizhen Lin
David B. Dunson
43
109
0
11 Mar 2014
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Arno Solin
Simo Särkkä
63
211
0
21 Jan 2014
Efficient Optimization for Sparse Gaussian Process Regression
Efficient Optimization for Sparse Gaussian Process Regression
Yanshuai Cao
Marcus A. Brubaker
David J. Fleet
Aaron Hertzmann
38
63
0
22 Oct 2013
1