Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1205.6326
Cited By
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
29 May 2012
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Framework for Evaluating Approximation Methods for Gaussian Process Regression"
42 / 42 papers shown
Title
Efficient dynamic modal load reconstruction using physics-informed Gaussian processes based on frequency-sparse Fourier basis functions
Gledson Rodrigo Tondo
I. Kavrakov
Guido Morgenthal
50
2
0
13 Mar 2025
Scalable Random Feature Latent Variable Models
Ying Li
Zhidi Lin
Yuhao Liu
Michael Minyi Zhang
Pablo Martínez Olmos
P. Djuric
BDL
DRL
28
0
0
23 Oct 2024
A Framework of Zero-Inflated Bayesian Negative Binomial Regression Models For Spatiotemporal Data
Qing He
Hsin-Hsiung Huang
11
4
0
06 Feb 2024
Leveraging Locality and Robustness to Achieve Massively Scalable Gaussian Process Regression
Robert Allison
Anthony Stephenson
F. Samuel
Edward O. Pyzer-Knapp
UQCV
17
3
0
26 Jun 2023
Query-Efficient Black-Box Red Teaming via Bayesian Optimization
Deokjae Lee
JunYeong Lee
Jung-Woo Ha
Jin-Hwa Kim
Sang-Woo Lee
Hwaran Lee
Hyun Oh Song
AAML
19
23
0
27 May 2023
A Global-Local Approximation Framework for Large-Scale Gaussian Process Modeling
Akhil Vakayil
Roshan Joseph
18
2
0
17 May 2023
Query-Efficient and Scalable Black-Box Adversarial Attacks on Discrete Sequential Data via Bayesian Optimization
Deokjae Lee
Seungyong Moon
Junhyeok Lee
Hyun Oh Song
AAML
15
38
0
17 Jun 2022
Forward variable selection enables fast and accurate dynamic system identification with Karhunen-Loève decomposed Gaussian processes
Kyle Hayes
Michael W. Fouts
Ali Baheri
D. Mebane
27
0
0
26 May 2022
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
20
3
0
22 Feb 2022
Scalable3-BO: Big Data meets HPC - A scalable asynchronous parallel high-dimensional Bayesian optimization framework on supercomputers
Anh Tran
6
0
0
12 Aug 2021
Kernel-Matrix Determinant Estimates from stopped Cholesky Decomposition
Simon Bartels
Wouter Boomsma
J. Frellsen
Damien Garreau
24
4
0
22 Jul 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
30
25
0
26 Jun 2021
Gaussian Processes with Skewed Laplace Spectral Mixture Kernels for Long-term Forecasting
Kai Chen
Twan van Laarhoven
E. Marchiori
AI4TS
29
8
0
08 Nov 2020
Aggregating Dependent Gaussian Experts in Local Approximation
Hamed Jalali
Gjergji Kasneci
14
4
0
17 Oct 2020
A Bayesian Nonparametric Analysis of the 2003 Outbreak of Highly Pathogenic Avian Influenza in the Netherlands
Rowland G. Seymour
T. Kypraios
P. O’Neill
T. Hagenaars
4
5
0
09 Sep 2020
Examining the Role of Mood Patterns in Predicting Self-Reported Depressive symptoms
L. L. Chen
Walid Magdy
H. Whalley
M. Wolters
11
11
0
14 Jun 2020
Fast increased fidelity approximate Gibbs samplers for Bayesian Gaussian process regression
Kelly R. Moran
M. Wheeler
14
4
0
11 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
37
14
0
08 Jun 2020
aphBO-2GP-3B: A budgeted asynchronous parallel multi-acquisition functions for constrained Bayesian optimization on high-performing computing architecture
Anh Tran
J. Furlan
T. Wildey
S. McCann
K. Pagalthivarthi
R. Visintainer
12
9
0
20 Mar 2020
Development of modeling and control strategies for an approximated Gaussian process
Shisheng Cui
Chia-Jung Chang
18
0
0
12 Feb 2020
Conjugate Gradients for Kernel Machines
Simon Bartels
Philipp Hennig
14
4
0
14 Nov 2019
A Low Rank Gaussian Process Prediction Model for Very Large Datasets
R. Rivera
17
1
0
09 Jun 2019
Wireless Traffic Prediction with Scalable Gaussian Process: Framework, Algorithms, and Verification
Yue Xu
Feng Yin
Wenjun Xu
Jiaru Lin
Shuguang Cui
25
99
0
13 Feb 2019
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
Yew-Soon Ong
Jianfei Cai
BDL
19
26
0
03 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
19
24
0
03 Nov 2018
Multi-Output Convolution Spectral Mixture for Gaussian Processes
Kai Chen
Twan van Laarhoven
P. Groot
Jinsong Chen
E. Marchiori
12
11
0
07 Aug 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
11
681
0
03 Jul 2018
A Data-Driven Approach to Dynamically Adjust Resource Allocation for Compute Clusters
Francesco Pace
Dimitrios Milios
D. Carra
D. Venzano
Pietro Michiardi
6
4
0
01 Jul 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
12
83
0
03 Jun 2018
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference
B. Thijssen
L. Wessels
35
8
0
12 Dec 2017
Cluster-based Kriging Approximation Algorithms for Complexity Reduction
Bas van Stein
Hao Wang
W. Kowalczyk
M. Emmerich
Thomas Bäck
33
45
0
04 Feb 2017
Overlapping Cover Local Regression Machines
Mohamed Elhoseiny
Ahmed Elgammal
36
0
0
05 Jan 2017
Exploring Prediction Uncertainty in Machine Translation Quality Estimation
Daniel Beck
Lucia Specia
Trevor Cohn
UQLM
11
18
0
30 Jun 2016
Preconditioning Kernel Matrices
Kurt Cutajar
Michael A. Osborne
John P. Cunningham
Maurizio Filippone
18
72
0
22 Feb 2016
System Identification through Online Sparse Gaussian Process Regression with Input Noise
Hildo Bijl
Thomas B. Schon
J. Wingerden
M. Verhaegen
27
41
0
29 Jan 2016
Gaussian Process Random Fields
David A. Moore
Stuart J. Russell
GP
17
19
0
31 Oct 2015
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
32
508
0
03 Mar 2015
Distributed Gaussian Processes
M. Deisenroth
Jun Wei Ng
GP
24
340
0
10 Feb 2015
Fast Direct Methods for Gaussian Processes
Sivaram Ambikasaran
D. Foreman-Mackey
L. Greengard
D. Hogg
M. O’Neil
46
378
0
24 Mar 2014
Robust and Scalable Bayes via a Median of Subset Posterior Measures
Stanislav Minsker
Sanvesh Srivastava
Lizhen Lin
David B. Dunson
43
109
0
11 Mar 2014
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Arno Solin
Simo Särkkä
63
211
0
21 Jan 2014
Efficient Optimization for Sparse Gaussian Process Regression
Yanshuai Cao
Marcus A. Brubaker
David J. Fleet
Aaron Hertzmann
38
63
0
22 Oct 2013
1