ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.6007
38
63

Efficient Optimization for Sparse Gaussian Process Regression

22 October 2013
Yanshuai Cao
Marcus A. Brubaker
David J. Fleet
Aaron Hertzmann
ArXivPDFHTML
Abstract

We propose an efficient optimization algorithm for selecting a subset of training data to induce sparsity for Gaussian process regression. The algorithm estimates an inducing set and the hyperparameters using a single objective, either the marginal likelihood or a variational free energy. The space and time complexity are linear in training set size, and the algorithm can be applied to large regression problems on discrete or continuous domains. Empirical evaluation shows state-of-art performance in discrete cases and competitive results in the continuous case.

View on arXiv
Comments on this paper