ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1111.4246
  4. Cited By
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo

The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo

18 November 2011
Matthew D. Hoffman
Andrew Gelman
ArXivPDFHTML

Papers citing "The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo"

50 / 893 papers shown
Title
Reliability Analysis of Complex Systems using Subset Simulations with
  Hamiltonian Neural Networks
Reliability Analysis of Complex Systems using Subset Simulations with Hamiltonian Neural Networks
Denny Thaler
Somayajulu L. N. Dhulipala
F. Bamer
Bernd Markert
Michael D. Shields
29
7
0
10 Jan 2024
Principled Gradient-based Markov Chain Monte Carlo for Text Generation
Principled Gradient-based Markov Chain Monte Carlo for Text Generation
Li Du
Afra Amini
Lucas Torroba Hennigen
Xinyan Velocity Yu
Jason Eisner
Holden Lee
Ryan Cotterell
BDL
18
1
0
29 Dec 2023
PINN surrogate of Li-ion battery models for parameter inference. Part
  II: Regularization and application of the pseudo-2D model
PINN surrogate of Li-ion battery models for parameter inference. Part II: Regularization and application of the pseudo-2D model
M. Hassanaly
Peter J. Weddle
Ryan N. King
Subhayan De
Alireza Doostan
Corey R. Randall
Eric J. Dufek
Andrew M. Colclasure
Kandler Smith
25
6
0
28 Dec 2023
Scaling Up Bayesian Neural Networks with Neural Networks
Scaling Up Bayesian Neural Networks with Neural Networks
Zahra Moslemi
Yang Meng
Shiwei Lan
B. Shahbaba
BDL
19
1
0
19 Dec 2023
Do Bayesian Neural Networks Improve Weapon System Predictive
  Maintenance?
Do Bayesian Neural Networks Improve Weapon System Predictive Maintenance?
Michael L. Potter
Miru D. Jun
15
0
0
16 Dec 2023
Towards Safe Multi-Task Bayesian Optimization
Towards Safe Multi-Task Bayesian Optimization
Jannis O. Lübsen
Christian Hespe
Annika Eichler
13
3
0
12 Dec 2023
Randomized Physics-Informed Machine Learning for Uncertainty
  Quantification in High-Dimensional Inverse Problems
Randomized Physics-Informed Machine Learning for Uncertainty Quantification in High-Dimensional Inverse Problems
Yifei Zong
D. Barajas-Solano
A. Tartakovsky
27
2
0
11 Dec 2023
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Philipp Reiser
Javier Enrique Aguilar
A. Guthke
Paul-Christian Burkner
36
2
0
08 Dec 2023
Improving Gradient-guided Nested Sampling for Posterior Inference
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
Yoshua Bengio
Y. Hezaveh
Laurence Perreault Levasseur
BDL
39
9
0
06 Dec 2023
Neural parameter calibration and uncertainty quantification for epidemic
  forecasting
Neural parameter calibration and uncertainty quantification for epidemic forecasting
Thomas Gaskin
Tim Conrad
G. Pavliotis
Christof Schütte
13
1
0
05 Dec 2023
A Bayesian neural network approach to Multi-fidelity surrogate modelling
A Bayesian neural network approach to Multi-fidelity surrogate modelling
Baptiste Kerleguer
C. Cannamela
Josselin Garnier
UQCV
6
5
0
05 Dec 2023
RJHMC-Tree for Exploration of the Bayesian Decision Tree Posterior
RJHMC-Tree for Exploration of the Bayesian Decision Tree Posterior
Jodie A. Cochrane
Adrian G. Wills
Sarah J. Johnson
16
2
0
04 Dec 2023
Streaming Bayesian Modeling for predicting Fat-Tailed Customer Lifetime
  Value
Streaming Bayesian Modeling for predicting Fat-Tailed Customer Lifetime Value
Alexey V. Calabourdin
Konstantin A. Aksenov
17
0
0
01 Dec 2023
Data-driven Prior Learning for Bayesian Optimisation
Data-driven Prior Learning for Bayesian Optimisation
Sigrid Passano Hellan
Christopher G. Lucas
Nigel H. Goddard
21
0
0
24 Nov 2023
Predicting the Probability of Collision of a Satellite with Space
  Debris: A Bayesian Machine Learning Approach
Predicting the Probability of Collision of a Satellite with Space Debris: A Bayesian Machine Learning Approach
Joao Simoes Catulo
Cláudia Soares
Marta Guimarães
9
1
0
17 Nov 2023
Direct Amortized Likelihood Ratio Estimation
Direct Amortized Likelihood Ratio Estimation
Adam D. Cobb
Brian Matejek
Daniel Elenius
Anirban Roy
Susmit Jha
11
2
0
17 Nov 2023
Variational Temporal IRT: Fast, Accurate, and Explainable Inference of
  Dynamic Learner Proficiency
Variational Temporal IRT: Fast, Accurate, and Explainable Inference of Dynamic Learner Proficiency
Yunsung Kim
Sreechan Sankaranarayanan
Chris Piech
Candace Thille
VLM
39
2
0
14 Nov 2023
Statistical Learning of Conjunction Data Messages Through a Bayesian
  Non-Homogeneous Poisson Process
Statistical Learning of Conjunction Data Messages Through a Bayesian Non-Homogeneous Poisson Process
Marta Guimarães
Cláudia Soares
Chiara Manfletti
14
1
0
09 Nov 2023
BOB: Bayesian Optimized Bootstrap for Uncertainty Quantification in
  Gaussian Mixture Models
BOB: Bayesian Optimized Bootstrap for Uncertainty Quantification in Gaussian Mixture Models
Santiago Marin
Bronwyn Loong
A. Westveld
9
0
0
07 Nov 2023
For how many iterations should we run Markov chain Monte Carlo?
For how many iterations should we run Markov chain Monte Carlo?
C. Margossian
Andrew Gelman
19
2
0
05 Nov 2023
Uncertainty Quantification in Multivariable Regression for Material
  Property Prediction with Bayesian Neural Networks
Uncertainty Quantification in Multivariable Regression for Material Property Prediction with Bayesian Neural Networks
Longze Li
Jiang Chang
Aleksandar Vakanski
Yachun Wang
Tiankai Yao
Min Xian
AI4CE
11
17
0
04 Nov 2023
Local Bayesian Dirichlet mixing of imperfect models
Local Bayesian Dirichlet mixing of imperfect models
Vojtech Kejzlar
L. Neufcourt
W. Nazarewicz
13
10
0
02 Nov 2023
An Embedded Diachronic Sense Change Model with a Case Study from Ancient
  Greek
An Embedded Diachronic Sense Change Model with a Case Study from Ancient Greek
Schyan Zafar
Geoff K. Nicholls
21
1
0
01 Nov 2023
Using Autodiff to Estimate Posterior Moments, Marginals and Samples
Using Autodiff to Estimate Posterior Moments, Marginals and Samples
Sam Bowyer
Thomas Heap
Laurence Aitchison
35
1
0
26 Oct 2023
autoMALA: Locally adaptive Metropolis-adjusted Langevin algorithm
autoMALA: Locally adaptive Metropolis-adjusted Langevin algorithm
Miguel Biron-Lattes
Nikola Surjanovic
Saifuddin Syed
Trevor Campbell
Alexandre Bouchard-Coté
18
10
0
25 Oct 2023
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs
  with Stochastic Support
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support
Tim Reichelt
C.-H. Luke Ong
Tom Rainforth
22
0
0
23 Oct 2023
Towards Understanding Sycophancy in Language Models
Towards Understanding Sycophancy in Language Models
Mrinank Sharma
Meg Tong
Tomasz Korbak
D. Duvenaud
Amanda Askell
...
Oliver Rausch
Nicholas Schiefer
Da Yan
Miranda Zhang
Ethan Perez
211
178
0
20 Oct 2023
Neural Likelihood Approximation for Integer Valued Time Series Data
Neural Likelihood Approximation for Integer Valued Time Series Data
Luke O'Loughlin
John Maclean
Andrew Black
AI4TS
15
0
0
19 Oct 2023
A representation learning approach to probe for dynamical dark energy in
  matter power spectra
A representation learning approach to probe for dynamical dark energy in matter power spectra
Davide Piras
Lucas Lombriser
14
2
0
16 Oct 2023
On the Properties and Estimation of Pointwise Mutual Information
  Profiles
On the Properties and Estimation of Pointwise Mutual Information Profiles
Paweł Czyż
Frederic Grabowski
Julia E. Vogt
N. Beerenwinkel
Alexander Marx
19
1
0
16 Oct 2023
Posterior Sampling-based Online Learning for Episodic POMDPs
Posterior Sampling-based Online Learning for Episodic POMDPs
Dengwang Tang
Dongze Ye
Rahul Jain
A. Nayyar
Pierluigi Nuzzo
OffRL
42
0
0
16 Oct 2023
An Introduction to the Calibration of Computer Models
An Introduction to the Calibration of Computer Models
Richard D. Wilkinson
Christopher W. Lanyon
24
0
0
13 Oct 2023
Bayesian inference and cure rate modeling for event history data
Bayesian inference and cure rate modeling for event history data
Panagiotis Papastamoulis
Fotios Milienos
8
3
0
10 Oct 2023
Dynamical versus Bayesian Phase Transitions in a Toy Model of
  Superposition
Dynamical versus Bayesian Phase Transitions in a Toy Model of Superposition
Zhongtian Chen
Edmund Lau
Jake Mendel
Susan Wei
Daniel Murfet
14
13
0
10 Oct 2023
Multi-fidelity No-U-Turn Sampling
Multi-fidelity No-U-Turn Sampling
Kislaya Ravi
T. Neckel
H. Bungartz
17
1
0
04 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
26
40
0
04 Oct 2023
Reparameterized Variational Rejection Sampling
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
11
1
0
26 Sep 2023
Generative Filtering for Recursive Bayesian Inference with Streaming
  Data
Generative Filtering for Recursive Bayesian Inference with Streaming Data
Ian Taylor
Andee Kaplan
Brenda Betancourt
11
0
0
25 Sep 2023
Local and Global Trend Bayesian Exponential Smoothing Models
Local and Global Trend Bayesian Exponential Smoothing Models
Slawek Smyl
Christoph Bergmeir
Alexander Dokumentov
Xueying Long
Erwin Wibowo
Daniel F. Schmidt
16
4
0
25 Sep 2023
Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling
Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling
H. Christiansen
Federico Errica
Francesco Alesiani
40
6
0
24 Sep 2023
Inferring Capabilities from Task Performance with Bayesian Triangulation
Inferring Capabilities from Task Performance with Bayesian Triangulation
John Burden
Konstantinos Voudouris
Ryan Burnell
Danaja Rutar
Lucy G. Cheke
José Hernández Orallo
18
7
0
21 Sep 2023
Flow Annealed Kalman Inversion for Gradient-Free Inference in Bayesian
  Inverse Problems
Flow Annealed Kalman Inversion for Gradient-Free Inference in Bayesian Inverse Problems
R. Grumitt
M. Karamanis
U. Seljak
27
1
0
20 Sep 2023
Harnessing Collective Intelligence Under a Lack of Cultural Consensus
Harnessing Collective Intelligence Under a Lack of Cultural Consensus
Necdet Gurkan
Jordan W. Suchow
11
2
0
18 Sep 2023
Model Calibration and Validation From A Statistical Inference
  Perspective
Model Calibration and Validation From A Statistical Inference Perspective
Samson Ting
Thomas Lymburn
T. Stemler
Yuchao Sun
Michael Small
21
0
0
14 Sep 2023
Amortised Inference in Bayesian Neural Networks
Amortised Inference in Bayesian Neural Networks
Tommy Rochussen
UQCV
BDL
25
0
0
06 Sep 2023
Exact and Efficient Bayesian Inference for Privacy Risk Quantification
  (Extended Version)
Exact and Efficient Bayesian Inference for Privacy Risk Quantification (Extended Version)
Rasmus C. Rønneberg
Raúl Pardo
Andrzej Wasowski
4
0
0
31 Aug 2023
Income, education, and other poverty-related variables: a journey
  through Bayesian hierarchical models
Income, education, and other poverty-related variables: a journey through Bayesian hierarchical models
Irving Gómez-Méndez
Chainarong Amornbunchornvej
11
3
0
31 Aug 2023
Learning variational autoencoders via MCMC speed measures
Learning variational autoencoders via MCMC speed measures
Marcel Hirt
Vasileios Kreouzis
P. Dellaportas
BDL
DRL
13
2
0
26 Aug 2023
Auto-weighted Bayesian Physics-Informed Neural Networks and robust
  estimations for multitask inverse problems in pore-scale imaging of
  dissolution
Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution
S. Pérez
P. Poncet
25
3
0
24 Aug 2023
Probabilistic load forecasting with Reservoir Computing
Probabilistic load forecasting with Reservoir Computing
Michele Guerra
Simone Scardapane
F. Bianchi
BDL
16
3
0
24 Aug 2023
Previous
12345...161718
Next