ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.14820
  4. Cited By
How Smooth Is Attention?
v1v2 (latest)

How Smooth Is Attention?

22 December 2023
Valérie Castin
Pierre Ablin
Gabriel Peyré
    AAML
ArXiv (abs)PDFHTML

Papers citing "How Smooth Is Attention?"

29 / 29 papers shown
Title
A mathematical perspective on Transformers
A mathematical perspective on Transformers
Borjan Geshkovski
Cyril Letrouit
Yury Polyanskiy
Philippe Rigollet
EDLAI4CE
98
46
0
17 Dec 2023
The emergence of clusters in self-attention dynamics
The emergence of clusters in self-attention dynamics
Borjan Geshkovski
Cyril Letrouit
Yury Polyanskiy
Philippe Rigollet
77
56
0
09 May 2023
Sinkformers: Transformers with Doubly Stochastic Attention
Sinkformers: Transformers with Doubly Stochastic Attention
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
76
82
0
22 Oct 2021
On the Expressive Power of Self-Attention Matrices
On the Expressive Power of Self-Attention Matrices
Valerii Likhosherstov
K. Choromanski
Adrian Weller
84
36
0
07 Jun 2021
Lipschitz Normalization for Self-Attention Layers with Application to
  Graph Neural Networks
Lipschitz Normalization for Self-Attention Layers with Application to Graph Neural Networks
George Dasoulas
Kevin Scaman
Aladin Virmaux
GNN
63
39
0
08 Mar 2021
Globally-Robust Neural Networks
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAMLOOD
131
130
0
16 Feb 2021
On the Regularity of Attention
On the Regularity of Attention
James Vuckovic
A. Baratin
Rémi Tachet des Combes
34
7
0
10 Feb 2021
A case for new neural network smoothness constraints
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
98
50
0
14 Dec 2020
Point Transformer
Point Transformer
Nico Engel
Vasileios Belagiannis
Klaus C. J. Dietmayer
3DPC
181
2,003
0
02 Nov 2020
A Functional Perspective on Learning Symmetric Functions with Neural
  Networks
A Functional Perspective on Learning Symmetric Functions with Neural Networks
Aaron Zweig
Joan Bruna
46
22
0
16 Aug 2020
The Lipschitz Constant of Self-Attention
The Lipschitz Constant of Self-Attention
Hyunjik Kim
George Papamakarios
A. Mnih
77
146
0
08 Jun 2020
On Layer Normalization in the Transformer Architecture
On Layer Normalization in the Transformer Architecture
Ruibin Xiong
Yunchang Yang
Di He
Kai Zheng
Shuxin Zheng
Chen Xing
Huishuai Zhang
Yanyan Lan
Liwei Wang
Tie-Yan Liu
AI4CE
142
995
0
12 Feb 2020
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural
  Networks
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
96
460
0
12 Jun 2019
Understanding and Improving Transformer From a Multi-Particle Dynamic
  System Point of View
Understanding and Improving Transformer From a Multi-Particle Dynamic System Point of View
Yiping Lu
Zhuohan Li
Di He
Zhiqing Sun
Bin Dong
Tao Qin
Liwei Wang
Tie-Yan Liu
AI4CE
78
174
0
06 Jun 2019
Residual Flows for Invertible Generative Modeling
Residual Flows for Invertible Generative Modeling
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDLTPMDRL
111
377
0
06 Jun 2019
Stochastic Deep Networks
Stochastic Deep Networks
Gwendoline de Bie
Gabriel Peyré
Marco Cuturi
81
21
0
19 Nov 2018
Sorting out Lipschitz function approximation
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
86
324
0
13 Nov 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
417
5,156
0
19 Jun 2018
Lipschitz regularity of deep neural networks: analysis and efficient
  estimation
Lipschitz regularity of deep neural networks: analysis and efficient estimation
Kevin Scaman
Aladin Virmaux
83
529
0
28 May 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation
  Invariance for Deep Neural Networks
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
105
308
0
12 Feb 2018
Evaluating the Robustness of Neural Networks: An Extreme Value Theory
  Approach
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
83
468
0
31 Jan 2018
Spectrally-normalized margin bounds for neural networks
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
207
1,224
0
26 Jun 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
138
808
0
28 Apr 2017
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
472
3,147
0
04 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OODAAML
266
8,579
0
16 Aug 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
416
10,526
0
21 Jul 2016
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
280
19,107
0
20 Dec 2014
Neural Machine Translation by Jointly Learning to Align and Translate
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
575
27,325
0
01 Sep 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
280
14,961
1
21 Dec 2013
1