Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.05120
Cited By
Bayesian Synthetic Likelihood
9 May 2023
David T. Frazier
Christopher C. Drovandi
David J. Nott
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Synthetic Likelihood"
50 / 107 papers shown
Title
Warped Gradient-Enhanced Gaussian Process Surrogate Models for Exponential Family Likelihoods with Intractable Normalizing Constants
Quan Vu
M. Moores
A. Zammit‐Mangion
20
1
0
10 May 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
27
74
0
15 Apr 2021
Approximate Bayesian inference from noisy likelihoods with Gaussian process emulated MCMC
Marko Jarvenpaa
J. Corander
8
3
0
08 Apr 2021
Synthetic Likelihood in Misspecified Models: Consequences and Corrections
David T. Frazier
Christopher C. Drovandi
David J. Nott
23
10
0
08 Apr 2021
Metropolis-Hastings via Classification
Tetsuya Kaji
Veronika Rockova
23
8
0
06 Mar 2021
A Comparison of Likelihood-Free Methods With and Without Summary Statistics
Christopher C. Drovandi
David T. Frazier
34
33
0
03 Mar 2021
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
34
33
0
12 Feb 2021
Score Matched Neural Exponential Families for Likelihood-Free Inference
Lorenzo Pacchiardi
Ritabrata Dutta
27
27
0
20 Dec 2020
On a Variational Approximation based Empirical Likelihood ABC Method
S. Chaudhuri
Subhro Ghosh
David J. Nott
Kim Cuc Pham
16
2
0
12 Nov 2020
Robust Approximate Bayesian Computation: An Adjustment Approach
David T. Frazier
Christopher C. Drovandi
Rubén Loaiza-Maya
11
13
0
07 Aug 2020
Robust Bayesian Classification Using an Optimistic Score Ratio
Viet Anh Nguyen
Nian Si
Jose H. Blanchet
19
13
0
08 Jul 2020
Transformations in Semi-Parametric Bayesian Synthetic Likelihood
Jacob W. Priddle
Christopher C. Drovandi
6
2
0
03 Jul 2020
Distortion estimates for approximate Bayesian inference
Hanwen Xing
Geoff K. Nicholls
J. Lee
8
7
0
19 Jun 2020
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
26
10
0
18 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
22
40
0
15 Jun 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
42
17
0
14 Apr 2020
Adversarial Likelihood-Free Inference on Black-Box Generator
Dongjun Kim
Weonyoung Joo
Seung-Jae Shin
Kyungwoo Song
Il-Chul Moon
GAN
6
4
0
13 Apr 2020
An approximate KLD based experimental design for models with intractable likelihoods
Ziqiao Ao
Jinglai Li
11
5
0
01 Apr 2020
Sequential Bayesian Experimental Design for Implicit Models via Mutual Information
Steven Kleinegesse
Christopher C. Drovandi
Michael U. Gutmann
8
28
0
20 Mar 2020
Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference Setting
Niccolò Dalmasso
Rafael Izbicki
Ann B. Lee
9
20
0
24 Feb 2020
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
45
117
0
10 Feb 2020
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDL
DRL
24
44
0
29 Oct 2019
Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
11
29
0
23 Oct 2019
Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
8
23
0
17 Oct 2019
Batch simulations and uncertainty quantification in Gaussian process surrogate approximate Bayesian computation
Marko Jarvenpaa
Aki Vehtari
Pekka Marttinen
25
15
0
14 Oct 2019
Efficient Bayesian synthetic likelihood with whitening transformations
Jacob W. Priddle
Scott A. Sisson
David T. Frazier
Christopher C. Drovandi
16
18
0
11 Sep 2019
A review of Approximate Bayesian Computation methods via density estimation: inference for simulator-models
C. Grazian
Yanan Fan
TPM
19
22
0
06 Sep 2019
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
32
14
0
26 Aug 2019
Particle Methods for Stochastic Differential Equation Mixed Effects Models
Imke Botha
Robert Kohn
Christopher C. Drovandi
17
21
0
25 Jul 2019
BSL: An R Package for Efficient Parameter Estimation for Simulation-Based Models via Bayesian Synthetic Likelihood
Ziwen An
Leah F. South
Christopher C. Drovandi
16
11
0
25 Jul 2019
Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms
Samuel Wiqvist
Andrew Golightly
Ashleigh T. McLean
Umberto Picchini
11
1
0
23 Jul 2019
Ensemble MCMC: Accelerating Pseudo-Marginal MCMC for State Space Models using the Ensemble Kalman Filter
Christopher C. Drovandi
R. Everitt
Andrew Golightly
D. Prangle
14
13
0
05 Jun 2019
Validation of Approximate Likelihood and Emulator Models for Computationally Intensive Simulations
Niccolò Dalmasso
Ann B. Lee
Rafael Izbicki
T. Pospisil
Ilmun Kim
Chieh-An Lin
24
8
0
27 May 2019
Stratified sampling and bootstrapping for approximate Bayesian computation
Umberto Picchini
R. Everitt
14
1
0
20 May 2019
Finding our Way in the Dark: Approximate MCMC for Approximate Bayesian Methods
Evgeny Levi
Radu V. Craiu
14
6
0
16 May 2019
Parallel Gaussian process surrogate Bayesian inference with noisy likelihood evaluations
Marko Jarvenpaa
Michael U. Gutmann
Aki Vehtari
Pekka Marttinen
16
40
0
03 May 2019
Robust Approximate Bayesian Inference with Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
18
44
0
09 Apr 2019
Robust Optimisation Monte Carlo
Borislav Ikonomov
Michael U. Gutmann
14
8
0
01 Apr 2019
Bayesian Learning of Conditional Kernel Mean Embeddings for Automatic Likelihood-Free Inference
Kelvin Hsu
F. Ramos
30
12
0
03 Mar 2019
Bayesian inference using synthetic likelihood: asymptotics and adjustments
David T. Frazier
David J. Nott
Christopher C. Drovandi
Robert Kohn
23
40
0
13 Feb 2019
Dynamic Likelihood-free Inference via Ratio Estimation (DIRE)
Traiko Dinev
Michael U. Gutmann
8
27
0
23 Oct 2018
An easy-to-use empirical likelihood ABC method
S. Chaudhuri
Subhro Ghosh
David J. Nott
Kim Cuc Pham
28
6
0
03 Oct 2018
Robust Bayesian Synthetic Likelihood via a Semi-Parametric Approach
Ziwen An
David J. Nott
Christopher C. Drovandi
18
51
0
16 Sep 2018
Likelihood-free inference with emulator networks
Jan-Matthis Lueckmann
Giacomo Bassetto
Theofanis Karaletsos
Jakob H. Macke
22
124
0
23 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
60
358
0
18 May 2018
Approximating the Likelihood in Approximate Bayesian Computation
Christopher C. Drovandi
Clara Grazian
Kerrie Mengersen
Christian P. Robert
27
12
0
18 Mar 2018
ABC and Indirect Inference
Christopher C. Drovandi
14
9
0
06 Mar 2018
Overview of Approximate Bayesian Computation
Scott A. Sisson
Y. Fan
Mark Beaumont
16
45
0
27 Feb 2018
Bootstrapped synthetic likelihood
R. Everitt
31
14
0
15 Nov 2017
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
34
240
0
06 Nov 2017
Previous
1
2
3
Next