Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.05120
Cited By
Bayesian Synthetic Likelihood
9 May 2023
David T. Frazier
Christopher C. Drovandi
David J. Nott
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Synthetic Likelihood"
50 / 107 papers shown
Title
Simulation-based inference for stochastic nonlinear mixed-effects models with applications in systems biology
Henrik Häggström
Sebastian Persson
Marija Cvijovic
Umberto Picchini
29
0
0
15 Apr 2025
Stacking Variational Bayesian Monte Carlo
Francesco Silvestrin
Chengkun Li
Luigi Acerbi
BDL
42
0
0
07 Apr 2025
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
77
9
0
17 Feb 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
116
2
0
17 Jan 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
74
13
0
03 Jan 2025
Learning from Summarized Data: Gaussian Process Regression with Sample Quasi-Likelihood
Yuta Shikuri
GP
41
0
0
23 Dec 2024
Structured Regularization for Constrained Optimization on the SPD Manifold
Andrew Cheng
Melanie Weber
13
1
0
12 Oct 2024
Cost-aware Simulation-based Inference
Ayush Bharti
Daolang Huang
Samuel Kaski
F. Briol
36
1
0
10 Oct 2024
A Comprehensive Guide to Simulation-based Inference in Computational Biology
Xiaoyu Wang
Ryan P. Kelly
A. Jenner
D. Warne
Christopher C. Drovandi
33
3
0
29 Sep 2024
A Likelihood-Free Approach to Goal-Oriented Bayesian Optimal Experimental Design
Atlanta Chakraborty
Xun Huan
Tommie A. Catanach
37
3
0
18 Aug 2024
Ensemble Kalman inversion approximate Bayesian computation
R. Everitt
29
0
0
26 Jul 2024
Preconditioned Neural Posterior Estimation for Likelihood-free Inference
Xiaoyu Wang
Ryan P. Kelly
D. Warne
Christopher C. Drovandi
37
4
0
21 Apr 2024
A Quadrature Approach for General-Purpose Batch Bayesian Optimization via Probabilistic Lifting
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Saad Hamid
Harald Oberhauser
Michael A. Osborne
GP
32
3
0
18 Apr 2024
Using early rejection Markov chain Monte Carlo and Gaussian processes to accelerate ABC methods
Xuefei Cao
Shijia Wang
Yongdao Zhou
36
3
0
13 Apr 2024
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
Pablo Lemos
Sammy N. Sharief
Nikolay Malkin
Laurence Perreault Levasseur
Y. Hezaveh
Laurence Perreault-Levasseur
Yashar Hezaveh
29
3
0
06 Feb 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
34
0
0
30 Jan 2024
Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation
Henri Pesonen
J. Corander
33
0
0
30 Dec 2023
Towards Data-Conditional Simulation for ABC Inference in Stochastic Differential Equations
P. Jovanovski
Andrew Golightly
Umberto Picchini
20
1
0
16 Oct 2023
perms: Likelihood-free estimation of marginal likelihoods for binary response data in Python and R
Dennis Christensen
Per August Jarval Moen
11
0
0
04 Sep 2023
A transport approach to sequential simulation-based inference
Paul-Baptiste Rubio
Youssef Marzouk
M. Parno
35
1
0
26 Aug 2023
Learning Robust Statistics for Simulation-based Inference under Model Misspecification
Daolang Huang
Ayush Bharti
Amauri Souza
Luigi Acerbi
Samuel Kaski
46
30
0
25 May 2023
Wasserstein Gaussianization and Efficient Variational Bayes for Robust Bayesian Synthetic Likelihood
Nhat-Minh Nguyen
Minh-Ngoc Tran
Christopher C. Drovandi
David J. Nott
9
1
0
24 May 2023
Generalised likelihood profiles for models with intractable likelihoods
D. Warne
Oliver J. Maclaren
E. Carr
Matthew J. Simpson
Christopher C. Drovandi
32
8
0
18 May 2023
JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models
Stefan T. Radev
Marvin Schmitt
Valentin Pratz
Umberto Picchini
Ullrich Kothe
Paul-Christian Bürkner
BDL
34
29
0
17 Feb 2023
Reliable Bayesian Inference in Misspecified Models
David T. Frazier
Robert Kohn
Christopher C. Drovandi
David Gunawan
16
3
0
13 Feb 2023
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
Pablo Lemos
A. Coogan
Y. Hezaveh
Laurence Perreault Levasseur
40
30
0
06 Feb 2023
Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference
Ryan P. Kelly
David J. Nott
David T. Frazier
D. Warne
Christopher C. Drovandi
25
10
0
31 Jan 2023
Better Together: pooling information in likelihood-free inference
David T. Frazier
Christopher C. Drovandi
David J. Nott
19
1
0
05 Dec 2022
Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models
Louis Sharrock
J. Simons
Song Liu
Mark Beaumont
DiffM
64
34
0
10 Oct 2022
Approximate Methods for Bayesian Computation
Radu V. Craiu
Evgeny Levi
15
5
0
06 Oct 2022
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
35
15
0
01 Aug 2022
Improving the Accuracy of Marginal Approximations in Likelihood-Free Inference via Localisation
Christopher C. Drovandi
David J. Nott
David T. Frazier
69
5
0
14 Jul 2022
Guided sequential ABC schemes for intractable Bayesian models
Umberto Picchini
M. Tamborrino
61
8
0
24 Jun 2022
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
34
11
0
22 Jun 2022
Generalised Bayesian Inference for Discrete Intractable Likelihood
Takuo Matsubara
Jeremias Knoblauch
F. Briol
Chris J. Oates
27
14
0
16 Jun 2022
Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization
Lorenzo Pacchiardi
Ritabrata Dutta
TPM
BDL
UQCV
GAN
26
18
0
31 May 2022
pyABC: Efficient and robust easy-to-use approximate Bayesian computation
Yannik Schälte
Emmanuel Klinger
Emad Alamoudi
Jan Hasenauer
11
22
0
24 Mar 2022
On predictive inference for intractable models via approximate Bayesian computation
Marko Jarvenpaa
J. Corander
TPM
33
2
0
23 Mar 2022
Modularized Bayesian analyses and cutting feedback in likelihood-free inference
Atlanta Chakraborty
David J. Nott
Christopher C. Drovandi
David T. Frazier
Scott A. Sisson
33
14
0
18 Mar 2022
Weakly informative priors and prior-data conflict checking for likelihood-free inference
Atlanta Chakraborty
David J. Nott
Michael Evans
22
4
0
21 Feb 2022
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
28
42
0
09 Feb 2022
Population Calibration using Likelihood-Free Bayesian Inference
Christopher C. Drovandi
Brodie A. J. Lawson
A. Jenner
A. Browning
17
2
0
04 Feb 2022
Black-box Bayesian inference for economic agent-based models
Joel Dyer
Patrick W Cannon
J. Farmer
Sebastian M. Schmon
18
23
0
01 Feb 2022
Optimality in Noisy Importance Sampling
F. Llorente
Luca Martino
Jesse Read
D. Delgado
39
5
0
07 Jan 2022
Efficient Multifidelity Likelihood-Free Bayesian Inference with Adaptive Computational Resource Allocation
Thomas P. Prescott
D. Warne
R. Baker
24
6
0
22 Dec 2021
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
39
26
0
20 Dec 2021
Measuring the accuracy of likelihood-free inference
Aden Forrow
R. Baker
13
2
0
15 Dec 2021
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
D. Warne
Thomas P. Prescott
Ruth Baker
Matthew J. Simpson
22
15
0
26 Oct 2021
A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful
Joeri Hermans
Arnaud Delaunoy
François Rozet
Antoine Wehenkel
Volodimir Begy
Gilles Louppe
64
38
0
13 Oct 2021
Validation and Inference of Agent Based Models
D. Townsend
AI4CE
14
2
0
08 Jul 2021
1
2
3
Next