ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.00780
  4. Cited By
Pseudo-Spherical Contrastive Divergence

Pseudo-Spherical Contrastive Divergence

1 November 2021
Lantao Yu
Jiaming Song
Yang Song
Stefano Ermon
ArXiv (abs)PDFHTML

Papers citing "Pseudo-Spherical Contrastive Divergence"

42 / 42 papers shown
Title
Proper scoring rules for estimation and forecast evaluation
Proper scoring rules for estimation and forecast evaluation
Kartik Waghmare
Johanna Ziegel
AI4TS
213
2
0
02 Apr 2025
No MCMC for me: Amortized sampling for fast and stable training of
  energy-based models
No MCMC for me: Amortized sampling for fast and stable training of energy-based models
Will Grathwohl
Jacob Kelly
Milad Hashemi
Mohammad Norouzi
Kevin Swersky
David Duvenaud
88
72
0
08 Oct 2020
Improved Techniques for Training Score-Based Generative Models
Improved Techniques for Training Score-Based Generative Models
Yang Song
Stefano Ermon
DiffM
266
1,163
0
16 Jun 2020
Training Deep Energy-Based Models with f-Divergence Minimization
Training Deep Energy-Based Models with f-Divergence Minimization
Lantao Yu
Yang Song
Jiaming Song
Stefano Ermon
230
43
0
06 Mar 2020
Your Classifier is Secretly an Energy Based Model and You Should Treat
  it Like One
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
90
546
0
06 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
547
42,639
0
03 Dec 2019
Flow Contrastive Estimation of Energy-Based Models
Flow Contrastive Estimation of Energy-Based Models
Ruiqi Gao
Erik Nijkamp
Diederik P. Kingma
Zhen Xu
Andrew M. Dai
Ying Nian Wu
GAN
72
115
0
02 Dec 2019
Bridging the Gap Between $f$-GANs and Wasserstein GANs
Bridging the Gap Between fff-GANs and Wasserstein GANs
Jiaming Song
Stefano Ermon
76
40
0
22 Oct 2019
Model Based Planning with Energy Based Models
Model Based Planning with Energy Based Models
Yilun Du
Toru Lin
Igor Mordatch
90
38
0
15 Sep 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,961
0
12 Jul 2019
Sliced Score Matching: A Scalable Approach to Density and Score
  Estimation
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
119
419
0
17 May 2019
Exponential Family Estimation via Adversarial Dynamics Embedding
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai
Ziqiang Liu
H. Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
76
53
0
27 Apr 2019
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward
  Energy-Based Model
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
98
213
0
22 Apr 2019
Maximum Entropy Generators for Energy-Based Models
Maximum Entropy Generators for Energy-Based Models
Rithesh Kumar
Sherjil Ozair
Anirudh Goyal
Aaron Courville
Yoshua Bengio
44
113
0
24 Jan 2019
Bias and Generalization in Deep Generative Models: An Empirical Study
Bias and Generalization in Deep Generative Models: An Empirical Study
Shengjia Zhao
Hongyu Ren
Arianna Yuan
Jiaming Song
Noah D. Goodman
Stefano Ermon
AI4CE
56
137
0
08 Nov 2018
Kernel Exponential Family Estimation via Doubly Dual Embedding
Kernel Exponential Family Estimation via Doubly Dual Embedding
Heike Adel
H. Dai
Arthur Gretton
Le Song
Dale Schuurmans
Niao He
48
36
0
06 Nov 2018
Stochastic Gradient Descent with Biased but Consistent Gradient
  Estimators
Stochastic Gradient Descent with Biased but Consistent Gradient Estimators
Jie Chen
Ronny Luss
79
45
0
31 Jul 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
303
3,144
0
09 Jul 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
164
4,445
0
16 Feb 2018
Which Training Methods for GANs do actually Converge?
Which Training Methods for GANs do actually Converge?
L. Mescheder
Andreas Geiger
Sebastian Nowozin
84
1,468
0
13 Jan 2018
Unbiased Markov chain Monte Carlo with couplings
Unbiased Markov chain Monte Carlo with couplings
Pierre E. Jacob
J. O'Leary
Yves F. Atchadé
58
73
0
11 Aug 2017
Sub-sampled Cubic Regularization for Non-convex Optimization
Sub-sampled Cubic Regularization for Non-convex Optimization
Jonas Köhler
Aurelien Lucchi
67
167
0
16 May 2017
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
179
4,829
0
26 Jan 2017
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
486
9,073
0
10 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
158
1,659
0
02 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,722
0
26 May 2016
Stochastic Variance Reduction for Nonconvex Optimization
Stochastic Variance Reduction for Nonconvex Optimization
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
109
604
0
19 Mar 2016
Rényi Divergence Variational Inference
Rényi Divergence Variational Inference
Yingzhen Li
Richard Turner
BDL
115
263
0
06 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,510
0
10 Dec 2015
BlackOut: Speeding up Recurrent Neural Network Language Models With Very
  Large Vocabularies
BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies
Shihao Ji
S.V.N. Vishwanathan
N. Satish
Michael J. Anderson
Pradeep Dubey
80
77
0
21 Nov 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
280
1,246
0
01 Sep 2015
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OODSyDaUQCV
179
874
0
12 Feb 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
247
8,429
0
28 Nov 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRLBDL
131
2,269
0
30 Oct 2014
Describing Textures in the Wild
Describing Textures in the Wild
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
S. Mohamed
Andrea Vedaldi
3DV
146
2,693
0
14 Nov 2013
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic
  Programming
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming
Saeed Ghadimi
Guanghui Lan
ODL
122
1,562
0
22 Sep 2013
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark Schmidt
Francis R. Bach
187
261
0
10 Dec 2012
Estimating the Hessian by Back-propagating Curvature
Estimating the Hessian by Back-propagating Curvature
James Martens
Ilya Sutskever
Kevin Swersky
95
80
0
27 Jun 2012
Rényi Divergence and Kullback-Leibler Divergence
Rényi Divergence and Kullback-Leibler Divergence
T. Erven
P. Harremoes
90
1,342
0
12 Jun 2012
Sum-Product Networks: A New Deep Architecture
Sum-Product Networks: A New Deep Architecture
Hoifung Poon
Pedro M. Domingos
TPM
83
761
0
14 Feb 2012
Bregman divergence as general framework to estimate unnormalized
  statistical models
Bregman divergence as general framework to estimate unnormalized statistical models
Michael U. Gutmann
J. Hirayama
81
80
0
14 Feb 2012
Proper local scoring rules
Proper local scoring rules
M. Parry
A. Dawid
Steffen Lauritzen
116
140
0
26 Jan 2011
1