ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.05933
11
164

Sub-sampled Cubic Regularization for Non-convex Optimization

16 May 2017
Jonas Köhler
Aurelien Lucchi
ArXivPDFHTML
Abstract

We consider the minimization of non-convex functions that typically arise in machine learning. Specifically, we focus our attention on a variant of trust region methods known as cubic regularization. This approach is particularly attractive because it escapes strict saddle points and it provides stronger convergence guarantees than first- and second-order as well as classical trust region methods. However, it suffers from a high computational complexity that makes it impractical for large-scale learning. Here, we propose a novel method that uses sub-sampling to lower this computational cost. By the use of concentration inequalities we provide a sampling scheme that gives sufficiently accurate gradient and Hessian approximations to retain the strong global and local convergence guarantees of cubically regularized methods. To the best of our knowledge this is the first work that gives global convergence guarantees for a sub-sampled variant of cubic regularization on non-convex functions. Furthermore, we provide experimental results supporting our theory.

View on arXiv
Comments on this paper