ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.03481
  4. Cited By
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments

Stein's Method Meets Computational Statistics: A Review of Some Recent Developments

7 May 2021
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
Fatemeh Ghaderinezhad
Jackson Gorham
Arthur Gretton
Christophe Ley
Qiang Liu
Lester W. Mackey
Chris J. Oates
Gesine Reinert
Yvik Swan
ArXivPDFHTML

Papers citing "Stein's Method Meets Computational Statistics: A Review of Some Recent Developments"

31 / 81 papers shown
Title
Stein Points
Stein Points
W. Chen
Lester W. Mackey
Jackson Gorham
François‐Xavier Briol
Chris J. Oates
56
102
0
27 Mar 2018
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate
  Modeling and Uncertainty Quantification
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification
Yinhao Zhu
N. Zabaras
UQCV
BDL
56
640
0
21 Jan 2018
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
49
67
0
30 Nov 2017
Message Passing Stein Variational Gradient Descent
Message Passing Stein Variational Gradient Descent
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
47
91
0
13 Nov 2017
Learning to Draw Samples with Amortized Stein Variational Gradient
  Descent
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GAN
BDL
46
79
0
20 Jul 2017
A Linear-Time Kernel Goodness-of-Fit Test
A Linear-Time Kernel Goodness-of-Fit Test
Wittawat Jitkrittum
Wenkai Xu
Z. Szabó
Kenji Fukumizu
Arthur Gretton
60
104
0
22 May 2017
Stein Variational Gradient Descent as Gradient Flow
Stein Variational Gradient Descent as Gradient Flow
Qiang Liu
OT
60
274
0
25 Apr 2017
Stein Variational Adaptive Importance Sampling
Stein Variational Adaptive Importance Sampling
J. Han
Qiang Liu
46
28
0
18 Apr 2017
Stein Variational Policy Gradient
Stein Variational Policy Gradient
Yang Liu
Prajit Ramachandran
Qiang Liu
Jian-wei Peng
53
138
0
07 Apr 2017
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
116
223
0
06 Mar 2017
Reinforcement Learning with Deep Energy-Based Policies
Reinforcement Learning with Deep Energy-Based Policies
Tuomas Haarnoja
Haoran Tang
Pieter Abbeel
Sergey Levine
62
1,329
0
27 Feb 2017
Measuring Sample Quality with Diffusions
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
58
116
0
21 Nov 2016
Learning to Draw Samples: With Application to Amortized MLE for
  Generative Adversarial Learning
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GAN
BDL
105
119
0
06 Nov 2016
Operator Variational Inference
Operator Variational Inference
Rajesh Ranganath
Jaan Altosaar
Dustin Tran
David M. Blei
38
116
0
27 Oct 2016
Black-box Importance Sampling
Black-box Importance Sampling
Qiang Liu
Jason D. Lee
FAtt
36
74
0
17 Oct 2016
Bounds for the normal approximation of the maximum likelihood estimator
  from m-dependent random variables
Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables
Andreas Anastasiou
26
22
0
19 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
61
1,082
0
16 Aug 2016
Convergence Rates for a Class of Estimators Based on Stein's Method
Convergence Rates for a Class of Estimators Based on Stein's Method
Chris J. Oates
Jon Cockayne
F. Briol
Mark Girolami
41
57
0
10 Mar 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
  Evaluation
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
94
478
0
10 Feb 2016
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
159
327
0
09 Feb 2016
Bounds for the asymptotic normality of the maximum likelihood estimator
  using the Delta method
Bounds for the asymptotic normality of the maximum likelihood estimator using the Delta method
Andreas Anastasiou
Christophe Ley
19
13
0
20 Aug 2015
Measuring Sample Quality with Stein's Method
Measuring Sample Quality with Stein's Method
Jackson Gorham
Lester W. Mackey
96
224
0
09 Jun 2015
Bounds for the normal approximation of the maximum likelihood estimator
Bounds for the normal approximation of the maximum likelihood estimator
Andreas Anastasiou
Gesine Reinert
21
11
0
10 Nov 2014
Stein's method for comparison of univariate distributions
Stein's method for comparison of univariate distributions
Christophe Ley
Gesine Reinert
Yvik Swan
OT
50
149
0
13 Aug 2014
Parametric Stein operators and variance bounds
Parametric Stein operators and variance bounds
Christophe Ley
Yvik Swan
41
23
0
22 May 2013
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
Anoop Korattikara
Yutian Chen
Max Welling
60
243
0
19 Apr 2013
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
S. Ahn
Anoop Korattikara Balan
Max Welling
62
305
0
27 Jun 2012
Zero Variance Markov Chain Monte Carlo for Bayesian Estimators
Zero Variance Markov Chain Monte Carlo for Bayesian Estimators
Antonietta Mira
R. Solgi
D. Imparato
66
89
0
14 Dec 2010
Stein couplings for normal approximation
Stein couplings for normal approximation
Louis H. Y. Chen
Adrian Röllin
55
54
0
31 Mar 2010
Minimum Probability Flow Learning
Minimum Probability Flow Learning
Jascha Narain Sohl-Dickstein
P. Battaglino
M. DeWeese
112
70
0
25 Jun 2009
A Kernel Method for the Two-Sample Problem
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
169
2,352
0
15 May 2008
Previous
12