ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.03481
  4. Cited By
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments

Stein's Method Meets Computational Statistics: A Review of Some Recent Developments

7 May 2021
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
Fatemeh Ghaderinezhad
Jackson Gorham
Arthur Gretton
Christophe Ley
Qiang Liu
Lester W. Mackey
Chris J. Oates
Gesine Reinert
Yvik Swan
ArXivPDFHTML

Papers citing "Stein's Method Meets Computational Statistics: A Review of Some Recent Developments"

50 / 81 papers shown
Title
Stein Discrepancy for Unsupervised Domain Adaptation
Stein Discrepancy for Unsupervised Domain Adaptation
Anneke von Seeger
Dongmian Zou
Gilad Lerman
133
0
0
24 Feb 2025
On the Robustness of Kernel Goodness-of-Fit Tests
On the Robustness of Kernel Goodness-of-Fit Tests
Xing Liu
F. Briol
OOD
93
5
0
11 Aug 2024
Targeted Separation and Convergence with Kernel Discrepancies
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
81
15
0
26 Sep 2022
Generalised Bayesian Inference for Discrete Intractable Likelihood
Generalised Bayesian Inference for Discrete Intractable Likelihood
Takuo Matsubara
Jeremias Knoblauch
F. Briol
Chris J. Oates
66
16
0
16 Jun 2022
Composite Goodness-of-fit Tests with Kernels
Composite Goodness-of-fit Tests with Kernels
Oscar Key
Arthur Gretton
F. Briol
T. Fernandez
51
15
0
19 Nov 2021
Bounds for the chi-square approximation of Friedman's statistic by
  Stein's method
Bounds for the chi-square approximation of Friedman's statistic by Stein's method
Robert E. Gaunt
Gesine Reinert
40
8
0
01 Nov 2021
Bounds for the chi-square approximation of the power divergence family
  of statistics
Bounds for the chi-square approximation of the power divergence family of statistics
Robert E. Gaunt
22
9
0
29 Jun 2021
Standardisation-function Kernel Stein Discrepancy: A Unifying View on
  Kernel Stein Discrepancy Tests for Goodness-of-fit
Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Wenkai Xu
41
4
0
23 Jun 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
40
79
0
15 Apr 2021
A Stein Goodness of fit Test for Exponential Random Graph Models
A Stein Goodness of fit Test for Exponential Random Graph Models
Wenkai Xu
Gesine Reinert
44
5
0
28 Feb 2021
Stein Variational Gradient Descent: many-particle and long-time
  asymptotics
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
62
22
0
25 Feb 2021
Characterizations of non-normalized discrete probability distributions
  and their application in statistics
Characterizations of non-normalized discrete probability distributions and their application in statistics
Steffen Betsch
B. Ebner
F. Nestmann
52
13
0
09 Nov 2020
Measure Transport with Kernel Stein Discrepancy
Measure Transport with Kernel Stein Discrepancy
Matthew A. Fisher
T. Nolan
Matthew M. Graham
D. Prangle
Chris J. Oates
OT
63
15
0
22 Oct 2020
Optimal quantisation of probability measures using maximum mean
  discrepancy
Optimal quantisation of probability measures using maximum mean discrepancy
Onur Teymur
Jackson Gorham
M. Riabiz
Chris J. Oates
39
29
0
14 Oct 2020
Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event
  Data
Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data
T. Fernandez
Nicolás Rivera
Wenkai Xu
Arthur Gretton
16
15
0
19 Aug 2020
Stochastic Stein Discrepancies
Stochastic Stein Discrepancies
Jackson Gorham
Anant Raj
Lester W. Mackey
42
37
0
06 Jul 2020
Sliced Kernelized Stein Discrepancy
Sliced Kernelized Stein Discrepancy
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
40
37
0
30 Jun 2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
49
77
0
17 Jun 2020
Scalable Control Variates for Monte Carlo Methods via Stochastic
  Optimization
Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization
Shijing Si
Chris J. Oates
Andrew B. Duncan
Lawrence Carin
F. Briol
BDL
32
21
0
12 Jun 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
70
69
0
03 Jun 2020
Wasserstein distance error bounds for the multivariate normal
  approximation of the maximum likelihood estimator
Wasserstein distance error bounds for the multivariate normal approximation of the maximum likelihood estimator
Andreas Anastasiou
Robert E. Gaunt
19
9
0
11 May 2020
Optimal Thinning of MCMC Output
Optimal Thinning of MCMC Output
M. Riabiz
W. Chen
Jon Cockayne
P. Swietach
Steven Niederer
Lester W. Mackey
Chris J. Oates
41
47
0
08 May 2020
Relaxing the Gaussian assumption in Shrinkage and SURE in high dimension
Relaxing the Gaussian assumption in Shrinkage and SURE in high dimension
M. Fathi
L. Goldstein
Gesine Reinert
Adrien Saumard
27
9
0
03 Apr 2020
On combining the zero bias transform and the empirical characteristic
  function to test normality
On combining the zero bias transform and the empirical characteristic function to test normality
B. Ebner
11
8
0
27 Feb 2020
Off-Policy Deep Reinforcement Learning with Analogous Disentangled
  Exploration
Off-Policy Deep Reinforcement Learning with Analogous Disentangled Exploration
Hoang Trung-Dung
Yitao Liang
Guy Van den Broeck
OffRL
52
3
0
25 Feb 2020
Semi-Exact Control Functionals From Sard's Method
Semi-Exact Control Functionals From Sard's Method
Leah F. South
Toni Karvonen
Christopher Nemeth
Mark Girolami
Chris J. Oates
20
17
0
31 Jan 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
47
27
0
25 Jan 2020
A new test of multivariate normality by a double estimation in a
  characterizing PDE
A new test of multivariate normality by a double estimation in a characterizing PDE
Philip Dörr
B. Ebner
N. Henze
4
9
0
25 Nov 2019
Stein Variational Gradient Descent With Matrix-Valued Kernels
Stein Variational Gradient Descent With Matrix-Valued Kernels
Dilin Wang
Ziyang Tang
Minh Nguyen
Qiang Liu
68
62
0
28 Oct 2019
A General Framework for Empirical Bayes Estimation in Discrete Linear
  Exponential Family
A General Framework for Empirical Bayes Estimation in Discrete Linear Exponential Family
Trambak Banerjee
Qiang Liu
Gourab Mukherjee
Wengunag Sun
50
7
0
20 Oct 2019
Variance reduction for Markov chains with application to MCMC
Variance reduction for Markov chains with application to MCMC
Denis Belomestny
L. Iosipoi
Eric Moulines
A. Naumov
S. Samsonov
BDL
34
30
0
08 Oct 2019
Minimum $L^q$-distance estimators for non-normalized parametric models
Minimum LqL^qLq-distance estimators for non-normalized parametric models
Steffen Betsch
B. Ebner
B. Klar
37
9
0
30 Aug 2019
Minimum Stein Discrepancy Estimators
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
43
92
0
19 Jun 2019
Stein Point Markov Chain Monte Carlo
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
61
57
0
09 May 2019
A stochastic version of Stein Variational Gradient Descent for efficient
  sampling
A stochastic version of Stein Variational Gradient Descent for efficient sampling
Lei Li
Yingzhou Li
Jian‐Guo Liu
Zibu Liu
Jianfeng Lu
30
35
0
09 Feb 2019
Bayesian semi-supervised learning for uncertainty-calibrated prediction
  of molecular properties and active learning
Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning
Yao Zhang
A. Lee
28
103
0
03 Feb 2019
Testing for normality in any dimension based on a partial differential
  equation involving the moment generating function
Testing for normality in any dimension based on a partial differential equation involving the moment generating function
N. Henze
J. Visagie
18
27
0
13 Jan 2019
Global Non-convex Optimization with Discretized Diffusions
Global Non-convex Optimization with Discretized Diffusions
Murat A. Erdogdu
Lester W. Mackey
Ohad Shamir
43
105
0
29 Oct 2018
Stein Variational Gradient Descent as Moment Matching
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
69
38
0
27 Oct 2018
Stein Neural Sampler
Stein Neural Sampler
Tianyang Hu
Zixiang Chen
Hanxi Sun
Jincheng Bai
Mao Ye
Guang Cheng
SyDa
GAN
34
35
0
08 Oct 2018
Random Feature Stein Discrepancies
Random Feature Stein Discrepancies
Jonathan H. Huggins
Lester W. Mackey
57
45
0
20 Jun 2018
A new characterization of the Gamma distribution and associated goodness
  of fit tests
A new characterization of the Gamma distribution and associated goodness of fit tests
Steffen Betsch
B. Ebner
23
31
0
15 Jun 2018
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
269
499
0
11 Jun 2018
Bounds for the asymptotic distribution of the likelihood ratio
Bounds for the asymptotic distribution of the likelihood ratio
Andreas Anastasiou
Gesine Reinert
17
17
0
10 Jun 2018
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
83
115
0
08 Jun 2018
Stein Variational Gradient Descent Without Gradient
Stein Variational Gradient Descent Without Gradient
J. Han
Qiang Liu
78
45
0
07 Jun 2018
Neural Control Variates for Variance Reduction
Neural Control Variates for Variance Reduction
Ruosi Wan
Mingjun Zhong
Haoyi Xiong
Zhanxing Zhu
BDL
DRL
29
18
0
01 Jun 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
41
88
0
29 May 2018
Fisher Efficient Inference of Intractable Models
Fisher Efficient Inference of Intractable Models
Song Liu
Takafumi Kanamori
Wittawat Jitkrittum
Yu Chen
49
14
0
18 May 2018
Scaling limit of the Stein variational gradient descent: the mean field
  regime
Scaling limit of the Stein variational gradient descent: the mean field regime
Jianfeng Lu
Yulong Lu
J. Nolen
20
79
0
10 May 2018
12
Next