ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.2391
16
11

Bounds for the normal approximation of the maximum likelihood estimator

10 November 2014
Andreas Anastasiou
Gesine Reinert
ArXivPDFHTML
Abstract

While the asymptotic normality of the maximum likelihood estimator under regularity conditions is long established, this paper derives explicit bounds for the bounded Wasserstein distance between the distribution of the maximum likelihood estimator (MLE) and the normal distribution. For this task, we employ Stein's method. We focus on independent and identically distributed random variables, covering both discrete and continuous distributions as well as exponential and non-exponential families. In particular, a closed form expression of the MLE is not required. We also use a perturbation method to treat cases where the MLE has positive probability of being on the boundary of the parameter space.

View on arXiv
Comments on this paper