ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.05714
21
22

Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables

19 September 2016
Andreas Anastasiou
ArXivPDFHTML
Abstract

The asymptotic normality of the Maximum Likelihood Estimator (MLE) is a long established result. Explicit bounds for the distributional distance between the distribution of the MLE and the normal distribution have recently been obtained for the case of independent random variables. In this paper, a local dependence structure is introduced between the random variables and we give upper bounds which are specified for the Wasserstein metric.

View on arXiv
Comments on this paper