ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.11216
13
67

Riemannian Stein Variational Gradient Descent for Bayesian Inference

30 November 2017
Chang-rui Liu
Jun Zhu
ArXivPDFHTML
Abstract

We develop Riemannian Stein Variational Gradient Descent (RSVGD), a Bayesian inference method that generalizes Stein Variational Gradient Descent (SVGD) to Riemann manifold. The benefits are two-folds: (i) for inference tasks in Euclidean spaces, RSVGD has the advantage over SVGD of utilizing information geometry, and (ii) for inference tasks on Riemann manifolds, RSVGD brings the unique advantages of SVGD to the Riemannian world. To appropriately transfer to Riemann manifolds, we conceive novel and non-trivial techniques for RSVGD, which are required by the intrinsically different characteristics of general Riemann manifolds from Euclidean spaces. We also discover Riemannian Stein's Identity and Riemannian Kernelized Stein Discrepancy. Experimental results show the advantages over SVGD of exploring distribution geometry and the advantages of particle-efficiency, iteration-effectiveness and approximation flexibility over other inference methods on Riemann manifolds.

View on arXiv
Comments on this paper