ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.05036
  4. Cited By
Estimating and Evaluating Regression Predictive Uncertainty in Deep
  Object Detectors
v1v2v3 (latest)

Estimating and Evaluating Regression Predictive Uncertainty in Deep Object Detectors

13 January 2021
Ali Harakeh
Steven L. Waslander
    UQCV
ArXiv (abs)PDFHTMLGithub (67★)

Papers citing "Estimating and Evaluating Regression Predictive Uncertainty in Deep Object Detectors"

31 / 31 papers shown
Title
A Spectral Energy Distance for Parallel Speech Synthesis
A Spectral Energy Distance for Parallel Speech Synthesis
A. Gritsenko
Tim Salimans
Rianne van den Berg
Jasper Snoek
Nal Kalchbrenner
45
70
0
03 Aug 2020
Localization Uncertainty Estimation for Anchor-Free Object Detection
Localization Uncertainty Estimation for Anchor-Free Object Detection
Youngwan Lee
Joong-won Hwang
Hyungil Kim
Kimin Yun
Yongjin Kwon
Yuseok Bae
Joungyoul Park
75
32
0
28 Jun 2020
End-to-End Object Detection with Transformers
End-to-End Object Detection with Transformers
Nicolas Carion
Francisco Massa
Gabriel Synnaeve
Nicolas Usunier
Alexander Kirillov
Sergey Zagoruyko
ViT3DVPINN
434
13,108
0
26 May 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCVFedML
84
320
0
15 Feb 2020
Can We Trust You? On Calibration of a Probabilistic Object Detector for
  Autonomous Driving
Can We Trust You? On Calibration of a Probabilistic Object Detector for Autonomous Driving
Di Feng
Lars Rosenbaum
Claudius Glaeser
Fabian Timm
Klaus C. J. Dietmayer
UQCV3DPC
49
39
0
26 Sep 2019
Verified Uncertainty Calibration
Verified Uncertainty Calibration
Ananya Kumar
Percy Liang
Tengyu Ma
176
357
0
23 Sep 2019
A Mask-RCNN Baseline for Probabilistic Object Detection
A Mask-RCNN Baseline for Probabilistic Object Detection
Phil Ammirato
Alexander C. Berg
52
18
0
09 Aug 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
183
1,702
0
06 Jun 2019
Reliable training and estimation of variance networks
Reliable training and estimation of variance networks
N. Detlefsen
Martin Jørgensen
Søren Hauberg
UQCV
95
89
0
04 Jun 2019
Uncertainty Estimation in One-Stage Object Detection
Uncertainty Estimation in One-Stage Object Detection
Florian Kraus
Klaus C. J. Dietmayer
UQCV
60
83
0
24 May 2019
Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization
  Uncertainty for Autonomous Driving
Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving
Jiwoong Choi
Dayoung Chun
Hyun Kim
Hyuk-Jae Lee
77
402
0
09 Apr 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OODVLM
191
3,452
0
28 Mar 2019
LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous
  Driving
LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving
Gregory P. Meyer
A. Laddha
E. Kee
Carlos Vallespi-Gonzalez
Carl K. Wellington
3DPC
76
338
0
20 Mar 2019
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object
  Detectors
BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors
Ali Harakeh
Michael H. W. Smart
Steven L. Waslander
BDLUQCV
62
119
0
09 Mar 2019
Probabilistic Object Detection: Definition and Evaluation
Probabilistic Object Detection: Definition and Evaluation
David Hall
Feras Dayoub
John Skinner
Haoyang Zhang
Dimity Miller
Peter Corke
G. Carneiro
A. Angelova
Niko Sünderhauf
UQCV
80
110
0
27 Nov 2018
The Open Images Dataset V4: Unified image classification, object
  detection, and visual relationship detection at scale
The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale
Alina Kuznetsova
H. Rom
N. Alldrin
J. Uijlings
Ivan Krasin
...
S. Popov
Matteo Malloci
Alexander Kolesnikov
Tom Duerig
V. Ferrari
ObjDVLM
118
1,348
0
02 Nov 2018
Bounding Box Regression with Uncertainty for Accurate Object Detection
Bounding Box Regression with Uncertainty for Accurate Object Detection
Yihui He
Chenchen Zhu
Jianren Wang
Marios Savvides
Xinming Zhang
ObjD
78
469
0
23 Sep 2018
Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time
  LiDAR 3D Object Detection
Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection
Di Feng
Lars Rosenbaum
Fabian Timm
Klaus C. J. Dietmayer
3DPC
66
69
0
14 Sep 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDLUQCV
201
636
0
01 Jul 2018
Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural
  Network For Lidar 3D Vehicle Detection
Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection
Di Feng
Lars Rosenbaum
Klaus C. J. Dietmayer
3DPCUQCV
64
247
0
13 Apr 2018
The Cramer Distance as a Solution to Biased Wasserstein Gradients
The Cramer Distance as a Solution to Biased Wasserstein Gradients
Marc G. Bellemare
Ivo Danihelka
Will Dabney
S. Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
GAN
82
344
0
30 May 2017
MMD GAN: Towards Deeper Understanding of Moment Matching Network
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
GAN
66
724
0
24 May 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDLOODUDUQCVPER
362
4,719
0
15 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
842
5,841
0
05 Dec 2016
DISCO Nets: DISsimilarity COefficient Networks
DISCO Nets: DISsimilarity COefficient Networks
Diane Bouchacourt
P. Mudigonda
Sebastian Nowozin
BDLUDDRL
131
59
0
08 Jun 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
852
9,346
0
06 Jun 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMatObjD
528
62,377
0
04 Jun 2015
Generative Moment Matching Networks
Generative Moment Matching Networks
Yujia Li
Kevin Swersky
R. Zemel
OODGAN
116
847
0
10 Feb 2015
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
424
43,814
0
01 May 2014
Equivalence of distance-based and RKHS-based statistics in hypothesis
  testing
Equivalence of distance-based and RKHS-based statistics in hypothesis testing
Dino Sejdinovic
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
221
687
0
25 Jul 2012
Contrasting Probabilistic Scoring Rules
Contrasting Probabilistic Scoring Rules
R. Machete
66
31
0
19 Dec 2011
1