ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.04050
  4. Cited By
A survey of algorithmic recourse: definitions, formulations, solutions,
  and prospects

A survey of algorithmic recourse: definitions, formulations, solutions, and prospects

8 October 2020
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
    FaML
ArXivPDFHTML

Papers citing "A survey of algorithmic recourse: definitions, formulations, solutions, and prospects"

50 / 110 papers shown
Title
Generating Counterfactual and Contrastive Explanations using SHAP
Generating Counterfactual and Contrastive Explanations using SHAP
Shubham Rathi
40
56
0
21 Jun 2019
Explanations can be manipulated and geometry is to blame
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
49
329
0
19 Jun 2019
Issues with post-hoc counterfactual explanations: a discussion
Issues with post-hoc counterfactual explanations: a discussion
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
117
43
0
11 Jun 2019
Metric Learning for Individual Fairness
Metric Learning for Individual Fairness
Christina Ilvento
FaML
49
97
0
01 Jun 2019
Model Agnostic Contrastive Explanations for Structured Data
Model Agnostic Contrastive Explanations for Structured Data
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
FAtt
59
82
0
31 May 2019
Efficient candidate screening under multiple tests and implications for
  fairness
Efficient candidate screening under multiple tests and implications for fairness
Lee Cohen
Zachary Chase Lipton
Yishay Mansour
36
32
0
27 May 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
71
320
0
27 May 2019
Explainable Reinforcement Learning Through a Causal Lens
Explainable Reinforcement Learning Through a Causal Lens
Prashan Madumal
Tim Miller
L. Sonenberg
F. Vetere
CML
71
357
0
27 May 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual
  Explanations
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
100
1,005
0
19 May 2019
Counterfactual Visual Explanations
Counterfactual Visual Explanations
Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
CML
56
510
0
16 Apr 2019
Equal Opportunity in Online Classification with Partial Feedback
Equal Opportunity in Online Classification with Partial Feedback
Yahav Bechavod
Katrina Ligett
Aaron Roth
Bo Waggoner
Zhiwei Steven Wu
FaML
35
60
0
06 Feb 2019
An Evaluation of the Human-Interpretability of Explanation
An Evaluation of the Human-Interpretability of Explanation
Isaac Lage
Emily Chen
Jeffrey He
Menaka Narayanan
Been Kim
Sam Gershman
Finale Doshi-Velez
FAtt
XAI
96
153
0
31 Jan 2019
Fairwashing: the risk of rationalization
Fairwashing: the risk of rationalization
Ulrich Aïvodji
Hiromi Arai
O. Fortineau
Sébastien Gambs
Satoshi Hara
Alain Tapp
FaML
30
146
0
28 Jan 2019
Efficient Search for Diverse Coherent Explanations
Efficient Search for Diverse Coherent Explanations
Chris Russell
51
236
0
02 Jan 2019
Interpretable Credit Application Predictions With Counterfactual
  Explanations
Interpretable Credit Application Predictions With Counterfactual Explanations
Rory Mc Grath
Luca Costabello
Chan Le Van
Paul Sweeney
F. Kamiab
Zhao Shen
Freddy Lecue
FAtt
35
109
0
13 Nov 2018
Contrastive Explanation: A Structural-Model Approach
Contrastive Explanation: A Structural-Model Approach
Tim Miller
CML
39
167
0
07 Nov 2018
Explaining Explanations in AI
Explaining Explanations in AI
Brent Mittelstadt
Chris Russell
Sandra Wachter
XAI
81
664
0
04 Nov 2018
A Survey of Learning Causality with Data: Problems and Methods
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo
Lu Cheng
Jundong Li
P. R. Hahn
Huan Liu
CML
49
169
0
25 Sep 2018
Actionable Recourse in Linear Classification
Actionable Recourse in Linear Classification
Berk Ustun
Alexander Spangher
Yang Liu
FaML
84
545
0
18 Sep 2018
Model Reconstruction from Model Explanations
Model Reconstruction from Model Explanations
S. Milli
Ludwig Schmidt
Anca Dragan
Moritz Hardt
FAtt
39
177
0
13 Jul 2018
Handling Incomplete Heterogeneous Data using VAEs
Handling Incomplete Heterogeneous Data using VAEs
A. Nazábal
Pablo Martínez Olmos
Zoubin Ghahramani
Isabel Valera
37
345
0
10 Jul 2018
On the Robustness of Interpretability Methods
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
50
524
0
21 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
103
938
0
20 Jun 2018
Contrastive Explanations with Local Foil Trees
Contrastive Explanations with Local Foil Trees
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
FAtt
32
82
0
19 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
70
1,849
0
31 May 2018
Local Rule-Based Explanations of Black Box Decision Systems
Local Rule-Based Explanations of Black Box Decision Systems
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
110
436
0
28 May 2018
Black-box Adversarial Attacks with Limited Queries and Information
Black-box Adversarial Attacks with Limited Queries and Information
Andrew Ilyas
Logan Engstrom
Anish Athalye
Jessy Lin
MLAU
AAML
136
1,194
0
23 Apr 2018
Privacy-preserving Prediction
Privacy-preserving Prediction
Cynthia Dwork
Vitaly Feldman
44
90
0
27 Mar 2018
Explanations based on the Missing: Towards Contrastive Explanations with
  Pertinent Negatives
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
89
587
0
21 Feb 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic
  Corrections
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
88
63
0
21 Feb 2018
Multimodal Explanations: Justifying Decisions and Pointing to the
  Evidence
Multimodal Explanations: Justifying Decisions and Pointing to the Evidence
Dong Huk Park
Lisa Anne Hendricks
Zeynep Akata
Anna Rohrbach
Bernt Schiele
Trevor Darrell
Marcus Rohrbach
61
421
0
15 Feb 2018
Stealing Hyperparameters in Machine Learning
Stealing Hyperparameters in Machine Learning
Binghui Wang
Neil Zhenqiang Gong
AAML
121
461
0
14 Feb 2018
Prophit: Causal inverse classification for multiple continuously valued
  treatment policies
Prophit: Causal inverse classification for multiple continuously valued treatment policies
Michael T. Lash
Qihang Lin
W. Street
CML
25
3
0
14 Feb 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
81
3,922
0
06 Feb 2018
Inverse Classification for Comparison-based Interpretability in Machine
  Learning
Inverse Classification for Comparison-based Interpretability in Machine Learning
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
108
100
0
22 Dec 2017
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
67
2,332
0
01 Nov 2017
Latent Space Oddity: on the Curvature of Deep Generative Models
Latent Space Oddity: on the Curvature of Deep Generative Models
Georgios Arvanitidis
Lars Kai Hansen
Søren Hauberg
DRL
78
267
0
31 Oct 2017
Interpretation of Neural Networks is Fragile
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
104
861
0
29 Oct 2017
Interpretability via Model Extraction
Interpretability via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
47
129
0
29 Jun 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
265
2,248
0
24 Jun 2017
Explanation in Artificial Intelligence: Insights from the Social
  Sciences
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
217
4,229
0
22 Jun 2017
Interpretable Predictions of Tree-based Ensembles via Actionable Feature
  Tweaking
Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking
Gabriele Tolomei
Fabrizio Silvestri
Andrew Haines
M. Lalmas
29
207
0
20 Jun 2017
Fair Inference On Outcomes
Fair Inference On Outcomes
Razieh Nabi
I. Shpitser
FaML
38
349
0
29 May 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
343
3,742
0
28 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
290
1,849
0
03 Feb 2017
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
108
2,520
0
26 Oct 2016
Generalized Inverse Classification
Generalized Inverse Classification
Michael T. Lash
Qihang Lin
W. Street
Jennifer G. Robinson
Jeffrey W. Ohlmann
37
60
0
05 Oct 2016
Stealing Machine Learning Models via Prediction APIs
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
68
1,798
0
09 Sep 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
160
8,497
0
16 Aug 2016
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
110
3,672
0
10 Jun 2016
Previous
123
Next