Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.04050
Cited By
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
8 October 2020
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A survey of algorithmic recourse: definitions, formulations, solutions, and prospects"
50 / 110 papers shown
Title
Generating Counterfactual and Contrastive Explanations using SHAP
Shubham Rathi
40
56
0
21 Jun 2019
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
49
329
0
19 Jun 2019
Issues with post-hoc counterfactual explanations: a discussion
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
117
43
0
11 Jun 2019
Metric Learning for Individual Fairness
Christina Ilvento
FaML
49
97
0
01 Jun 2019
Model Agnostic Contrastive Explanations for Structured Data
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
FAtt
59
82
0
31 May 2019
Efficient candidate screening under multiple tests and implications for fairness
Lee Cohen
Zachary Chase Lipton
Yishay Mansour
36
32
0
27 May 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
71
320
0
27 May 2019
Explainable Reinforcement Learning Through a Causal Lens
Prashan Madumal
Tim Miller
L. Sonenberg
F. Vetere
CML
71
357
0
27 May 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
100
1,005
0
19 May 2019
Counterfactual Visual Explanations
Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
CML
56
510
0
16 Apr 2019
Equal Opportunity in Online Classification with Partial Feedback
Yahav Bechavod
Katrina Ligett
Aaron Roth
Bo Waggoner
Zhiwei Steven Wu
FaML
35
60
0
06 Feb 2019
An Evaluation of the Human-Interpretability of Explanation
Isaac Lage
Emily Chen
Jeffrey He
Menaka Narayanan
Been Kim
Sam Gershman
Finale Doshi-Velez
FAtt
XAI
96
153
0
31 Jan 2019
Fairwashing: the risk of rationalization
Ulrich Aïvodji
Hiromi Arai
O. Fortineau
Sébastien Gambs
Satoshi Hara
Alain Tapp
FaML
30
146
0
28 Jan 2019
Efficient Search for Diverse Coherent Explanations
Chris Russell
51
236
0
02 Jan 2019
Interpretable Credit Application Predictions With Counterfactual Explanations
Rory Mc Grath
Luca Costabello
Chan Le Van
Paul Sweeney
F. Kamiab
Zhao Shen
Freddy Lecue
FAtt
35
109
0
13 Nov 2018
Contrastive Explanation: A Structural-Model Approach
Tim Miller
CML
39
167
0
07 Nov 2018
Explaining Explanations in AI
Brent Mittelstadt
Chris Russell
Sandra Wachter
XAI
81
664
0
04 Nov 2018
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo
Lu Cheng
Jundong Li
P. R. Hahn
Huan Liu
CML
49
169
0
25 Sep 2018
Actionable Recourse in Linear Classification
Berk Ustun
Alexander Spangher
Yang Liu
FaML
84
545
0
18 Sep 2018
Model Reconstruction from Model Explanations
S. Milli
Ludwig Schmidt
Anca Dragan
Moritz Hardt
FAtt
39
177
0
13 Jul 2018
Handling Incomplete Heterogeneous Data using VAEs
A. Nazábal
Pablo Martínez Olmos
Zoubin Ghahramani
Isabel Valera
37
345
0
10 Jul 2018
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
50
524
0
21 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
103
938
0
20 Jun 2018
Contrastive Explanations with Local Foil Trees
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
FAtt
32
82
0
19 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
70
1,849
0
31 May 2018
Local Rule-Based Explanations of Black Box Decision Systems
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
110
436
0
28 May 2018
Black-box Adversarial Attacks with Limited Queries and Information
Andrew Ilyas
Logan Engstrom
Anish Athalye
Jessy Lin
MLAU
AAML
136
1,194
0
23 Apr 2018
Privacy-preserving Prediction
Cynthia Dwork
Vitaly Feldman
44
90
0
27 Mar 2018
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
89
587
0
21 Feb 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
88
63
0
21 Feb 2018
Multimodal Explanations: Justifying Decisions and Pointing to the Evidence
Dong Huk Park
Lisa Anne Hendricks
Zeynep Akata
Anna Rohrbach
Bernt Schiele
Trevor Darrell
Marcus Rohrbach
61
421
0
15 Feb 2018
Stealing Hyperparameters in Machine Learning
Binghui Wang
Neil Zhenqiang Gong
AAML
121
461
0
14 Feb 2018
Prophit: Causal inverse classification for multiple continuously valued treatment policies
Michael T. Lash
Qihang Lin
W. Street
CML
25
3
0
14 Feb 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
81
3,922
0
06 Feb 2018
Inverse Classification for Comparison-based Interpretability in Machine Learning
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
108
100
0
22 Dec 2017
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
67
2,332
0
01 Nov 2017
Latent Space Oddity: on the Curvature of Deep Generative Models
Georgios Arvanitidis
Lars Kai Hansen
Søren Hauberg
DRL
78
267
0
31 Oct 2017
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
104
861
0
29 Oct 2017
Interpretability via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
47
129
0
29 Jun 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
265
2,248
0
24 Jun 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
217
4,229
0
22 Jun 2017
Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking
Gabriele Tolomei
Fabrizio Silvestri
Andrew Haines
M. Lalmas
29
207
0
20 Jun 2017
Fair Inference On Outcomes
Razieh Nabi
I. Shpitser
FaML
38
349
0
29 May 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
343
3,742
0
28 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
290
1,849
0
03 Feb 2017
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
108
2,520
0
26 Oct 2016
Generalized Inverse Classification
Michael T. Lash
Qihang Lin
W. Street
Jennifer G. Robinson
Jeffrey W. Ohlmann
37
60
0
05 Oct 2016
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
68
1,798
0
09 Sep 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
160
8,497
0
16 Aug 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
110
3,672
0
10 Jun 2016
Previous
1
2
3
Next