ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.04050
  4. Cited By
A survey of algorithmic recourse: definitions, formulations, solutions,
  and prospects

A survey of algorithmic recourse: definitions, formulations, solutions, and prospects

8 October 2020
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
    FaML
ArXivPDFHTML

Papers citing "A survey of algorithmic recourse: definitions, formulations, solutions, and prospects"

50 / 110 papers shown
Title
Incentive-Aware Machine Learning; Robustness, Fairness, Improvement & Causality
Incentive-Aware Machine Learning; Robustness, Fairness, Improvement & Causality
Chara Podimata
81
0
0
08 May 2025
Understanding Fixed Predictions via Confined Regions
Understanding Fixed Predictions via Confined Regions
Connor Lawless
Tsui-Wei Weng
Berk Ustun
Madeleine Udell
67
0
0
22 Feb 2025
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
Chhavi Yadav
Evan Monroe Laufer
Dan Boneh
Kamalika Chaudhuri
106
0
0
06 Feb 2025
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaML
FAtt
119
1
0
29 Oct 2024
S-CFE: Simple Counterfactual Explanations
S-CFE: Simple Counterfactual Explanations
Shpresim Sadiku
Moritz Wagner
Sai Ganesh Nagarajan
Sebastian Pokutta
78
0
0
21 Oct 2024
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
Junyu Cao
Ruijiang Gao
Esmaeil Keyvanshokooh
100
1
0
18 Oct 2024
Unifying Perspectives: Plausible Counterfactual Explanations on Global, Group-wise, and Local Levels
Unifying Perspectives: Plausible Counterfactual Explanations on Global, Group-wise, and Local Levels
Patryk Wielopolski
Oleksii Furman
Łukasz Lenkiewicz
Jerzy Stefanowski
Maciej Ziȩba
44
0
0
27 May 2024
Generating Likely Counterfactuals Using Sum-Product Networks
Generating Likely Counterfactuals Using Sum-Product Networks
Jiri Nemecek
Tomás Pevný
Georgios Korpas
TPM
81
0
0
25 Jan 2024
Fairness in Machine Learning
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
272
493
0
31 Dec 2020
Beyond Individualized Recourse: Interpretable and Interactive Summaries
  of Actionable Recourses
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
Kaivalya Rawal
Himabindu Lakkaraju
34
11
0
15 Sep 2020
Model extraction from counterfactual explanations
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
43
51
0
03 Sep 2020
Counterfactual Explanations for Machine Learning on Multivariate Time
  Series Data
Counterfactual Explanations for Machine Learning on Multivariate Time Series Data
E. Ates
Burak Aksar
V. Leung
A. Coskun
AI4TS
87
67
0
25 Aug 2020
PermuteAttack: Counterfactual Explanation of Machine Learning Credit
  Scorecards
PermuteAttack: Counterfactual Explanation of Machine Learning Credit Scorecards
Masoud Hashemi
Ali Fathi
AAML
31
32
0
24 Aug 2020
DECE: Decision Explorer with Counterfactual Explanations for Machine
  Learning Models
DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models
Furui Cheng
Yao Ming
Huamin Qu
CML
HAI
18
101
0
19 Aug 2020
Counterfactual Explanation Based on Gradual Construction for Deep
  Networks
Counterfactual Explanation Based on Gradual Construction for Deep Networks
Hong G Jung
Sin-Han Kang
Hee-Dong Kim
Dong-Ok Won
Seong-Whan Lee
OOD
FAtt
42
23
0
05 Aug 2020
Geometrically Enriched Latent Spaces
Geometrically Enriched Latent Spaces
Georgios Arvanitidis
Søren Hauberg
Bernhard Schölkopf
DRL
43
53
0
02 Aug 2020
Fast Real-time Counterfactual Explanations
Fast Real-time Counterfactual Explanations
Yunxia Zhao
27
15
0
11 Jul 2020
Machine Learning Explainability for External Stakeholders
Machine Learning Explainability for External Stakeholders
Umang Bhatt
Mckane Andrus
Adrian Weller
Alice Xiang
FaML
SILM
24
58
0
10 Jul 2020
Counterfactual explanation of machine learning survival models
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
63
19
0
26 Jun 2020
On Counterfactual Explanations under Predictive Multiplicity
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
102
85
0
23 Jun 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic
  approach
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
94
179
0
11 Jun 2020
Good Counterfactuals and Where to Find Them: A Case-Based Technique for
  Generating Counterfactuals for Explainable AI (XAI)
Good Counterfactuals and Where to Find Them: A Case-Based Technique for Generating Counterfactuals for Explainable AI (XAI)
Mark T. Keane
Barry Smyth
CML
54
146
0
26 May 2020
An ASP-Based Approach to Counterfactual Explanations for Classification
An ASP-Based Approach to Counterfactual Explanations for Classification
Leopoldo Bertossi
CML
39
15
0
28 Apr 2020
Multi-Objective Counterfactual Explanations
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
50
252
0
23 Apr 2020
SCOUT: Self-aware Discriminant Counterfactual Explanations
SCOUT: Self-aware Discriminant Counterfactual Explanations
Pei Wang
Nuno Vasconcelos
FAtt
38
82
0
16 Apr 2020
Plausible Counterfactuals: Auditing Deep Learning Classifiers with
  Realistic Adversarial Examples
Plausible Counterfactuals: Auditing Deep Learning Classifiers with Realistic Adversarial Examples
Alejandro Barredo Arrieta
Javier Del Ser
AAML
78
22
0
25 Mar 2020
Causal Interpretability for Machine Learning -- Problems, Methods and
  Evaluation
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
45
216
0
09 Mar 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
69
96
0
05 Mar 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
40
340
0
14 Feb 2020
Convex Density Constraints for Computing Plausible Counterfactual
  Explanations
Convex Density Constraints for Computing Plausible Counterfactual Explanations
André Artelt
Barbara Hammer
28
47
0
12 Feb 2020
Distal Explanations for Model-free Explainable Reinforcement Learning
Distal Explanations for Model-free Explainable Reinforcement Learning
Prashan Madumal
Tim Miller
L. Sonenberg
F. Vetere
FAtt
LRM
28
25
0
28 Jan 2020
Black Box Explanation by Learning Image Exemplars in the Latent Feature
  Space
Black Box Explanation by Learning Image Exemplars in the Latent Feature Space
Riccardo Guidotti
A. Monreale
Stan Matwin
D. Pedreschi
FAtt
65
67
0
27 Jan 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine
  Learning Classifiers
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
82
206
0
06 Dec 2019
EMAP: Explanation by Minimal Adversarial Perturbation
EMAP: Explanation by Minimal Adversarial Perturbation
M. Chapman-Rounds
Marc-Andre Schulz
Erik Pazos
K. Georgatzis
AAML
FAtt
20
6
0
02 Dec 2019
Causality for Machine Learning
Causality for Machine Learning
Bernhard Schölkopf
CML
AI4CE
LRM
59
455
0
24 Nov 2019
PRINCE: Provider-side Interpretability with Counterfactual Explanations
  in Recommender Systems
PRINCE: Provider-side Interpretability with Counterfactual Explanations in Recommender Systems
Azin Ghazimatin
Oana Balalau
Rishiraj Saha Roy
Gerhard Weikum
FAtt
36
99
0
19 Nov 2019
On the computation of counterfactual explanations -- A survey
On the computation of counterfactual explanations -- A survey
André Artelt
Barbara Hammer
LRM
36
50
0
15 Nov 2019
"How do I fool you?": Manipulating User Trust via Misleading Black Box
  Explanations
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
39
251
0
15 Nov 2019
Imperceptible Adversarial Attacks on Tabular Data
Imperceptible Adversarial Attacks on Tabular Data
Vincent Ballet
X. Renard
Jonathan Aigrain
Thibault Laugel
P. Frossard
Marcin Detyniecki
47
72
0
08 Nov 2019
Synthesizing Action Sequences for Modifying Model Decisions
Synthesizing Action Sequences for Modifying Model Decisions
Goutham Ramakrishnan
Yun Chan Lee
Aws Albarghouthi
94
33
0
30 Sep 2019
FACE: Feasible and Actionable Counterfactual Explanations
FACE: Feasible and Actionable Counterfactual Explanations
Rafael Poyiadzi
Kacper Sokol
Raúl Santos-Rodríguez
T. D. Bie
Peter A. Flach
57
368
0
20 Sep 2019
Equalizing Recourse across Groups
Equalizing Recourse across Groups
Vivek Gupta
Pegah Nokhiz
Chitradeep Dutta Roy
Suresh Venkatasubramanian
FaML
25
70
0
07 Sep 2019
Measurable Counterfactual Local Explanations for Any Classifier
Measurable Counterfactual Local Explanations for Any Classifier
Adam White
Artur Garcez
FAtt
22
99
0
08 Aug 2019
Efficient computation of counterfactual explanations of LVQ models
Efficient computation of counterfactual explanations of LVQ models
André Artelt
Barbara Hammer
24
16
0
02 Aug 2019
Towards Realistic Individual Recourse and Actionable Explanations in
  Black-Box Decision Making Systems
Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems
Shalmali Joshi
Oluwasanmi Koyejo
Warut D. Vijitbenjaronk
Been Kim
Joydeep Ghosh
FaML
44
186
0
22 Jul 2019
The Dangers of Post-hoc Interpretability: Unjustified Counterfactual
  Explanations
The Dangers of Post-hoc Interpretability: Unjustified Counterfactual Explanations
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
31
195
0
22 Jul 2019
Why Does My Model Fail? Contrastive Local Explanations for Retail
  Forecasting
Why Does My Model Fail? Contrastive Local Explanations for Retail Forecasting
Ana Lucic
H. Haned
Maarten de Rijke
52
63
0
17 Jul 2019
The What-If Tool: Interactive Probing of Machine Learning Models
The What-If Tool: Interactive Probing of Machine Learning Models
James Wexler
Mahima Pushkarna
Tolga Bolukbasi
Martin Wattenberg
F. Viégas
Jimbo Wilson
VLM
71
487
0
09 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
43
380
0
03 Jul 2019
On the Privacy Risks of Model Explanations
On the Privacy Risks of Model Explanations
Reza Shokri
Martin Strobel
Yair Zick
MIACV
PILM
SILM
FAtt
20
36
0
29 Jun 2019
123
Next