Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.04050
Cited By
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
8 October 2020
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A survey of algorithmic recourse: definitions, formulations, solutions, and prospects"
50 / 110 papers shown
Title
Incentive-Aware Machine Learning; Robustness, Fairness, Improvement & Causality
Chara Podimata
84
0
0
08 May 2025
Understanding Fixed Predictions via Confined Regions
Connor Lawless
Tsui-Wei Weng
Berk Ustun
Madeleine Udell
67
0
0
22 Feb 2025
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
Chhavi Yadav
Evan Monroe Laufer
Dan Boneh
Kamalika Chaudhuri
106
0
0
06 Feb 2025
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaML
FAtt
122
1
0
29 Oct 2024
S-CFE: Simple Counterfactual Explanations
Shpresim Sadiku
Moritz Wagner
Sai Ganesh Nagarajan
Sebastian Pokutta
80
0
0
21 Oct 2024
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
Junyu Cao
Ruijiang Gao
Esmaeil Keyvanshokooh
114
1
0
18 Oct 2024
Unifying Perspectives: Plausible Counterfactual Explanations on Global, Group-wise, and Local Levels
Patryk Wielopolski
Oleksii Furman
Łukasz Lenkiewicz
Jerzy Stefanowski
Maciej Ziȩba
47
0
0
27 May 2024
Generating Likely Counterfactuals Using Sum-Product Networks
Jiri Nemecek
Tomás Pevný
Georgios Korpas
TPM
81
0
0
25 Jan 2024
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
275
493
0
31 Dec 2020
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
Kaivalya Rawal
Himabindu Lakkaraju
34
11
0
15 Sep 2020
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
43
51
0
03 Sep 2020
Counterfactual Explanations for Machine Learning on Multivariate Time Series Data
E. Ates
Burak Aksar
V. Leung
A. Coskun
AI4TS
87
67
0
25 Aug 2020
PermuteAttack: Counterfactual Explanation of Machine Learning Credit Scorecards
Masoud Hashemi
Ali Fathi
AAML
34
32
0
24 Aug 2020
DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models
Furui Cheng
Yao Ming
Huamin Qu
CML
HAI
20
101
0
19 Aug 2020
Counterfactual Explanation Based on Gradual Construction for Deep Networks
Hong G Jung
Sin-Han Kang
Hee-Dong Kim
Dong-Ok Won
Seong-Whan Lee
OOD
FAtt
42
23
0
05 Aug 2020
Geometrically Enriched Latent Spaces
Georgios Arvanitidis
Søren Hauberg
Bernhard Schölkopf
DRL
43
53
0
02 Aug 2020
Fast Real-time Counterfactual Explanations
Yunxia Zhao
27
15
0
11 Jul 2020
Machine Learning Explainability for External Stakeholders
Umang Bhatt
Mckane Andrus
Adrian Weller
Alice Xiang
FaML
SILM
27
58
0
10 Jul 2020
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
63
19
0
26 Jun 2020
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
102
85
0
23 Jun 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
94
179
0
11 Jun 2020
Good Counterfactuals and Where to Find Them: A Case-Based Technique for Generating Counterfactuals for Explainable AI (XAI)
Mark T. Keane
Barry Smyth
CML
62
146
0
26 May 2020
An ASP-Based Approach to Counterfactual Explanations for Classification
Leopoldo Bertossi
CML
39
15
0
28 Apr 2020
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
52
252
0
23 Apr 2020
SCOUT: Self-aware Discriminant Counterfactual Explanations
Pei Wang
Nuno Vasconcelos
FAtt
38
82
0
16 Apr 2020
Plausible Counterfactuals: Auditing Deep Learning Classifiers with Realistic Adversarial Examples
Alejandro Barredo Arrieta
Javier Del Ser
AAML
78
22
0
25 Mar 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
45
216
0
09 Mar 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
72
96
0
05 Mar 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
42
340
0
14 Feb 2020
Convex Density Constraints for Computing Plausible Counterfactual Explanations
André Artelt
Barbara Hammer
34
47
0
12 Feb 2020
Distal Explanations for Model-free Explainable Reinforcement Learning
Prashan Madumal
Tim Miller
L. Sonenberg
F. Vetere
FAtt
LRM
31
25
0
28 Jan 2020
Black Box Explanation by Learning Image Exemplars in the Latent Feature Space
Riccardo Guidotti
A. Monreale
Stan Matwin
D. Pedreschi
FAtt
65
67
0
27 Jan 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
82
206
0
06 Dec 2019
EMAP: Explanation by Minimal Adversarial Perturbation
M. Chapman-Rounds
Marc-Andre Schulz
Erik Pazos
K. Georgatzis
AAML
FAtt
22
6
0
02 Dec 2019
Causality for Machine Learning
Bernhard Schölkopf
CML
AI4CE
LRM
64
455
0
24 Nov 2019
PRINCE: Provider-side Interpretability with Counterfactual Explanations in Recommender Systems
Azin Ghazimatin
Oana Balalau
Rishiraj Saha Roy
Gerhard Weikum
FAtt
40
99
0
19 Nov 2019
On the computation of counterfactual explanations -- A survey
André Artelt
Barbara Hammer
LRM
39
50
0
15 Nov 2019
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
42
251
0
15 Nov 2019
Imperceptible Adversarial Attacks on Tabular Data
Vincent Ballet
X. Renard
Jonathan Aigrain
Thibault Laugel
P. Frossard
Marcin Detyniecki
50
72
0
08 Nov 2019
Synthesizing Action Sequences for Modifying Model Decisions
Goutham Ramakrishnan
Yun Chan Lee
Aws Albarghouthi
96
33
0
30 Sep 2019
FACE: Feasible and Actionable Counterfactual Explanations
Rafael Poyiadzi
Kacper Sokol
Raúl Santos-Rodríguez
T. D. Bie
Peter A. Flach
59
368
0
20 Sep 2019
Equalizing Recourse across Groups
Vivek Gupta
Pegah Nokhiz
Chitradeep Dutta Roy
Suresh Venkatasubramanian
FaML
28
70
0
07 Sep 2019
Measurable Counterfactual Local Explanations for Any Classifier
Adam White
Artur Garcez
FAtt
24
99
0
08 Aug 2019
Efficient computation of counterfactual explanations of LVQ models
André Artelt
Barbara Hammer
26
16
0
02 Aug 2019
Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems
Shalmali Joshi
Oluwasanmi Koyejo
Warut D. Vijitbenjaronk
Been Kim
Joydeep Ghosh
FaML
47
186
0
22 Jul 2019
The Dangers of Post-hoc Interpretability: Unjustified Counterfactual Explanations
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
33
195
0
22 Jul 2019
Why Does My Model Fail? Contrastive Local Explanations for Retail Forecasting
Ana Lucic
H. Haned
Maarten de Rijke
52
63
0
17 Jul 2019
The What-If Tool: Interactive Probing of Machine Learning Models
James Wexler
Mahima Pushkarna
Tolga Bolukbasi
Martin Wattenberg
F. Viégas
Jimbo Wilson
VLM
71
487
0
09 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
45
380
0
03 Jul 2019
On the Privacy Risks of Model Explanations
Reza Shokri
Martin Strobel
Yair Zick
MIACV
PILM
SILM
FAtt
22
36
0
29 Jun 2019
1
2
3
Next