ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.04918
13
3

Prophit: Causal inverse classification for multiple continuously valued treatment policies

14 February 2018
Michael T. Lash
Qihang Lin
W. Street
    CML
ArXivPDFHTML
Abstract

Inverse classification uses an induced classifier as a queryable oracle to guide test instances towards a preferred posterior class label. The result produced from the process is a set of instance-specific feature perturbations, or recommendations, that optimally improve the probability of the class label. In this work, we adopt a causal approach to inverse classification, eliciting treatment policies (i.e., feature perturbations) for models induced with causal properties. In so doing, we solve a long-standing problem of eliciting multiple, continuously valued treatment policies, using an updated framework and corresponding set of assumptions, which we term the inverse classification potential outcomes framework (ICPOF), along with a new measure, referred to as the individual future estimated effects (iiiFEE). We also develop the approximate propensity score (APS), based on Gaussian processes, to weight treatments, much like the inverse propensity score weighting used in past works. We demonstrate the viability of our methods on student performance.

View on arXiv
Comments on this paper