ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.14911
  4. Cited By
Can Autonomous Vehicles Identify, Recover From, and Adapt to
  Distribution Shifts?

Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?

26 June 2020
Angelos Filos
P. Tigas
R. McAllister
Nicholas Rhinehart
Sergey Levine
Y. Gal
ArXivPDFHTML

Papers citing "Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?"

48 / 48 papers shown
Title
Technical report on label-informed logit redistribution for better domain generalization in low-shot classification with foundation models
Technical report on label-informed logit redistribution for better domain generalization in low-shot classification with foundation models
Behraj Khan
T. Syed
438
1
0
29 Jan 2025
EMPERROR: A Flexible Generative Perception Error Model for Probing Self-Driving Planners
EMPERROR: A Flexible Generative Perception Error Model for Probing Self-Driving Planners
Niklas Hanselmann
Simon Doll
Marius Cordts
Hendrik P. A. Lensch
Andreas Geiger
67
0
0
12 Nov 2024
Multi-Robot Motion Planning with Diffusion Models
Multi-Robot Motion Planning with Diffusion Models
Yorai Shaoul
Itamar Mishani
Shivam Vats
Jiaoyang Li
Maxim Likhachev
DiffM
106
7
0
04 Oct 2024
Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles
Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles
Tongfei
Guo
Rui Liu
Lili Su
91
1
0
25 Sep 2024
SEAL: Towards Safe Autonomous Driving via Skill-Enabled Adversary Learning for Closed-Loop Scenario Generation
SEAL: Towards Safe Autonomous Driving via Skill-Enabled Adversary Learning for Closed-Loop Scenario Generation
Benjamin Stoler
Ingrid Navarro
Jonathan M Francis
Jean Oh
AAML
84
4
0
16 Sep 2024
Learning by Cheating
Learning by Cheating
Dian Chen
Brady Zhou
V. Koltun
Philipp Krahenbuhl
SSL
101
515
0
27 Dec 2019
Scalability in Perception for Autonomous Driving: Waymo Open Dataset
Scalability in Perception for Autonomous Driving: Waymo Open Dataset
Pei Sun
Henrik Kretzschmar
Xerxes Dotiwalla
Aurelien Chouard
Vijaysai Patnaik
...
Shuyang Cheng
Yu Zhang
Jonathon Shlens
Zhifeng Chen
Dragomir Anguelov
127
2,881
0
10 Dec 2019
CoverNet: Multimodal Behavior Prediction using Trajectory Sets
CoverNet: Multimodal Behavior Prediction using Trajectory Sets
Tung Phan-Minh
E. Grigore
Freddy A. Boulton
Oscar Beijbom
Eric M. Wolff
86
384
0
23 Nov 2019
Worst Cases Policy Gradients
Worst Cases Policy Gradients
Yichuan Tang
Jian Zhang
Ruslan Salakhutdinov
56
75
0
09 Nov 2019
Solving Rubik's Cube with a Robot Hand
Solving Rubik's Cube with a Robot Hand
OpenAI
Ilge Akkaya
Marcin Andrychowicz
Maciek Chociej
Ma-teusz Litwin
...
Peter Welinder
Lilian Weng
Qiming Yuan
Wojciech Zaremba
Lei Zhang
ODL
113
1,227
0
16 Oct 2019
MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for
  Behavior Prediction
MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction
Yuning Chai
Benjamin Sapp
Mayank Bansal
Dragomir Anguelov
100
667
0
12 Oct 2019
Model Based Planning with Energy Based Models
Model Based Planning with Energy Based Models
Yilun Du
Toru Lin
Igor Mordatch
73
38
0
15 Sep 2019
Generalizing from a few environments in safety-critical reinforcement
  learning
Generalizing from a few environments in safety-critical reinforcement learning
Zachary Kenton
Angelos Filos
Owain Evans
Y. Gal
56
16
0
02 Jul 2019
Watch, Try, Learn: Meta-Learning from Demonstrations and Reward
Watch, Try, Learn: Meta-Learning from Demonstrations and Reward
Allan Zhou
Eric Jang
Daniel Kappler
Alexander Herzog
Mohi Khansari
Paul Wohlhart
Yunfei Bai
Mrinal Kalakrishnan
Sergey Levine
Chelsea Finn
68
49
0
07 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
167
1,691
0
06 Jun 2019
PRECOG: PREdiction Conditioned On Goals in Visual Multi-Agent Settings
PRECOG: PREdiction Conditioned On Goals in Visual Multi-Agent Settings
Nicholas Rhinehart
R. McAllister
Kris Kitani
Sergey Levine
60
373
0
03 May 2019
Exploring the Limitations of Behavior Cloning for Autonomous Driving
Exploring the Limitations of Behavior Cloning for Autonomous Driving
Felipe Codevilla
Eder Santana
Antonio M. López
Adrien Gaidon
49
543
0
18 Apr 2019
nuScenes: A multimodal dataset for autonomous driving
nuScenes: A multimodal dataset for autonomous driving
Holger Caesar
Varun Bankiti
Alex H. Lang
Sourabh Vora
Venice Erin Liong
Qiang Xu
Anush Krishnan
Yuxin Pan
G. Baldan
Oscar Beijbom
3DPC
292
5,732
0
26 Mar 2019
Robustness to Out-of-Distribution Inputs via Task-Aware Generative
  Uncertainty
Robustness to Out-of-Distribution Inputs via Task-Aware Generative Uncertainty
R. McAllister
G. Kahn
Jeff Clune
Sergey Levine
UQCV
OOD
69
38
0
27 Dec 2018
Evaluating Uncertainty Quantification in End-to-End Autonomous Driving
  Control
Evaluating Uncertainty Quantification in End-to-End Autonomous Driving Control
Rhiannon Michelmore
Marta Kwiatkowska
Y. Gal
UQCV
47
102
0
16 Nov 2018
Deep Imitative Models for Flexible Inference, Planning, and Control
Deep Imitative Models for Flexible Inference, Planning, and Control
Nicholas Rhinehart
R. McAllister
Sergey Levine
68
148
0
15 Oct 2018
Rethinking Self-driving: Multi-task Knowledge for Better Generalization
  and Accident Explanation Ability
Rethinking Self-driving: Multi-task Knowledge for Better Generalization and Accident Explanation Ability
Zhihao Li
Toshiyuki Motoyoshi
Kazuma Sasaki
T. Ogata
S. Sugano
LRM
42
39
0
28 Sep 2018
Multimodal Trajectory Predictions for Autonomous Driving using Deep
  Convolutional Networks
Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks
Henggang Cui
Vladan Radosavljevic
Fang-Chieh Chou
Tsung-Han Lin
Thi Nguyen
Tzu-Kuo Huang
J. Schneider
Nemanja Djuric
58
613
0
18 Sep 2018
Learning Dexterous In-Hand Manipulation
Learning Dexterous In-Hand Manipulation
OpenAI OpenAI
Marcin Andrychowicz
Bowen Baker
Maciek Chociej
Rafal Jozefowicz
...
Szymon Sidor
Joshua Tobin
Peter Welinder
Lilian Weng
Wojciech Zaremba
142
1,878
0
01 Aug 2018
CIRL: Controllable Imitative Reinforcement Learning for Vision-based
  Self-driving
CIRL: Controllable Imitative Reinforcement Learning for Vision-based Self-driving
Xiaodan Liang
Tairui Wang
Luona Yang
Eric Xing
55
269
0
10 Jul 2018
Conditional Affordance Learning for Driving in Urban Environments
Conditional Affordance Learning for Driving in Urban Environments
Axel Sauer
Nikolay Savinov
Andreas Geiger
45
186
0
18 Jun 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
224
1,277
0
30 May 2018
AI Safety Gridworlds
AI Safety Gridworlds
Jan Leike
Miljan Martic
Victoria Krakovna
Pedro A. Ortega
Tom Everitt
Andrew Lefrancq
Laurent Orseau
Shane Legg
108
253
0
27 Nov 2017
CARLA: An Open Urban Driving Simulator
CARLA: An Open Urban Driving Simulator
Alexey Dosovitskiy
G. Ros
Felipe Codevilla
Antonio M. López
V. Koltun
VLM
135
5,166
0
10 Nov 2017
End-to-end Driving via Conditional Imitation Learning
End-to-end Driving via Conditional Imitation Learning
Felipe Codevilla
Matthias Muller
Antonio M. López
V. Koltun
Alexey Dosovitskiy
125
1,066
0
06 Oct 2017
Deep reinforcement learning from human preferences
Deep reinforcement learning from human preferences
Paul Christiano
Jan Leike
Tom B. Brown
Miljan Martic
Shane Legg
Dario Amodei
160
3,302
0
12 Jun 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
823
11,899
0
09 Mar 2017
Uncertainty-Aware Reinforcement Learning for Collision Avoidance
Uncertainty-Aware Reinforcement Learning for Collision Avoidance
G. Kahn
Adam R. Villaflor
Vitchyr H. Pong
Pieter Abbeel
Sergey Levine
96
313
0
03 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
831
5,811
0
05 Dec 2016
CAD2RL: Real Single-Image Flight without a Single Real Image
CAD2RL: Real Single-Image Flight without a Single Real Image
Fereshteh Sadeghi
Sergey Levine
SSL
305
818
0
13 Nov 2016
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles
Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
174
351
0
05 Oct 2016
Concrete Problems in AI Safety
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
220
2,384
0
21 Jun 2016
Query-Efficient Imitation Learning for End-to-End Autonomous Driving
Query-Efficient Imitation Learning for End-to-End Autonomous Driving
Jiakai Zhang
Kyunghyun Cho
163
215
0
20 May 2016
Neural Autoregressive Distribution Estimation
Neural Autoregressive Distribution Estimation
Benigno Uria
Marc-Alexandre Côté
Karol Gregor
Iain Murray
Hugo Larochelle
81
314
0
07 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
821
9,306
0
06 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
313
4,179
0
21 May 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
185
1,886
0
20 May 2015
End-to-End Training of Deep Visuomotor Policies
End-to-End Training of Deep Visuomotor Policies
Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
BDL
311
3,434
0
02 Apr 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
127
945
0
18 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
1.0K
23,344
0
03 Jun 2014
A Reduction of Imitation Learning and Structured Prediction to No-Regret
  Online Learning
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
OffRL
220
3,216
0
02 Nov 2010
1