ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.14911
  4. Cited By
Can Autonomous Vehicles Identify, Recover From, and Adapt to
  Distribution Shifts?

Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?

26 June 2020
Angelos Filos
P. Tigas
R. McAllister
Nicholas Rhinehart
Sergey Levine
Y. Gal
ArXivPDFHTML

Papers citing "Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?"

16 / 16 papers shown
Title
Technical report on label-informed logit redistribution for better domain generalization in low-shot classification with foundation models
Technical report on label-informed logit redistribution for better domain generalization in low-shot classification with foundation models
Behraj Khan
T. Syed
383
1
0
29 Jan 2025
EMPERROR: A Flexible Generative Perception Error Model for Probing Self-Driving Planners
EMPERROR: A Flexible Generative Perception Error Model for Probing Self-Driving Planners
Niklas Hanselmann
Simon Doll
Marius Cordts
Hendrik P. A. Lensch
Andreas Geiger
62
0
0
12 Nov 2024
Multi-Robot Motion Planning with Diffusion Models
Multi-Robot Motion Planning with Diffusion Models
Yorai Shaoul
Itamar Mishani
Shivam Vats
Jiaoyang Li
Maxim Likhachev
DiffM
84
7
0
04 Oct 2024
Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles
Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles
Tongfei
Guo
Rui Liu
Lili Su
60
1
0
25 Sep 2024
SEAL: Towards Safe Autonomous Driving via Skill-Enabled Adversary Learning for Closed-Loop Scenario Generation
SEAL: Towards Safe Autonomous Driving via Skill-Enabled Adversary Learning for Closed-Loop Scenario Generation
Benjamin Stoler
Ingrid Navarro
Jonathan M Francis
Jean Oh
AAML
71
4
0
16 Sep 2024
Solving Rubik's Cube with a Robot Hand
Solving Rubik's Cube with a Robot Hand
OpenAI
Ilge Akkaya
Marcin Andrychowicz
Maciek Chociej
Ma-teusz Litwin
...
Peter Welinder
Lilian Weng
Qiming Yuan
Wojciech Zaremba
Lei Zhang
ODL
60
1,215
0
16 Oct 2019
MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for
  Behavior Prediction
MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction
Yuning Chai
Benjamin Sapp
Mayank Bansal
Dragomir Anguelov
76
659
0
12 Oct 2019
Watch, Try, Learn: Meta-Learning from Demonstrations and Reward
Watch, Try, Learn: Meta-Learning from Demonstrations and Reward
Allan Zhou
Eric Jang
Daniel Kappler
Alexander Herzog
Mohi Khansari
Paul Wohlhart
Yunfei Bai
Mrinal Kalakrishnan
Sergey Levine
Chelsea Finn
52
49
0
07 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
135
1,677
0
06 Jun 2019
nuScenes: A multimodal dataset for autonomous driving
nuScenes: A multimodal dataset for autonomous driving
Holger Caesar
Varun Bankiti
Alex H. Lang
Sourabh Vora
Venice Erin Liong
Qiang Xu
Anush Krishnan
Yuxin Pan
G. Baldan
Oscar Beijbom
3DPC
231
5,653
0
26 Mar 2019
Learning Dexterous In-Hand Manipulation
Learning Dexterous In-Hand Manipulation
OpenAI OpenAI
Marcin Andrychowicz
Bowen Baker
Maciek Chociej
Rafal Jozefowicz
...
Szymon Sidor
Joshua Tobin
Peter Welinder
Lilian Weng
Wojciech Zaremba
70
1,865
0
01 Aug 2018
AI Safety Gridworlds
AI Safety Gridworlds
Jan Leike
Miljan Martic
Victoria Krakovna
Pedro A. Ortega
Tom Everitt
Andrew Lefrancq
Laurent Orseau
Shane Legg
95
250
0
27 Nov 2017
End-to-end Driving via Conditional Imitation Learning
End-to-end Driving via Conditional Imitation Learning
Felipe Codevilla
Matthias Muller
Antonio M. López
V. Koltun
Alexey Dosovitskiy
102
1,062
0
06 Oct 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
754
11,793
0
09 Mar 2017
CAD2RL: Real Single-Image Flight without a Single Real Image
CAD2RL: Real Single-Image Flight without a Single Real Image
Fereshteh Sadeghi
Sergey Levine
SSL
279
814
0
13 Nov 2016
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
60
940
0
18 Feb 2015
1