ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.08811
17
2

G-Signatures: Global Graph Propagation With Randomized Signatures

17 February 2023
Bernhard Schafl
Lukas Gruber
Johannes Brandstetter
Sepp Hochreiter
ArXivPDFHTML
Abstract

Graph neural networks (GNNs) have evolved into one of the most popular deep learning architectures. However, GNNs suffer from over-smoothing node information and, therefore, struggle to solve tasks where global graph properties are relevant. We introduce G-Signatures, a novel graph learning method that enables global graph propagation via randomized signatures. G-Signatures use a new graph conversion concept to embed graph structured information which can be interpreted as paths in latent space. We further introduce the idea of latent space path mapping. This allows us to iteratively traverse latent space paths, and, thus globally process information. G-Signatures excel at extracting and processing global graph properties, and effectively scale to large graph problems. Empirically, we confirm the advantages of G-Signatures at several classification and regression tasks.

View on arXiv
Comments on this paper