ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.06231
  4. Cited By
Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
  Circuits

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

13 April 2020
Robert Peharz
Steven Braun
Antonio Vergari
Karl Stelzner
Alejandro Molina
Martin Trapp
Guy Van den Broeck
Kristian Kersting
Zoubin Ghahramani
    TPM
ArXivPDFHTML

Papers citing "Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits"

32 / 32 papers shown
Title
Semantic Probabilistic Control of Language Models
Semantic Probabilistic Control of Language Models
Kareem Ahmed
Catarina G Belém
Padhraic Smyth
Sameer Singh
53
0
0
04 May 2025
What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?
What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?
Lorenzo Loconte
Antonio Mari
G. Gala
Robert Peharz
Cassio de Campos
Erik Quaeghebeur
G. Vessio
Antonio Vergari
58
8
0
12 Sep 2024
On the Relationship Between Monotone and Squared Probabilistic Circuits
On the Relationship Between Monotone and Squared Probabilistic Circuits
Benjie Wang
Guy Van den Broeck
TPM
50
5
0
01 Aug 2024
Scaling Continuous Latent Variable Models as Probabilistic Integral Circuits
Scaling Continuous Latent Variable Models as Probabilistic Integral Circuits
G. Gala
Cassio de Campos
Antonio Vergari
Erik Quaeghebeur
TPM
74
4
0
10 Jun 2024
Credibility-Aware Multi-Modal Fusion Using Probabilistic Circuits
Credibility-Aware Multi-Modal Fusion Using Probabilistic Circuits
Sahil Sidheekh
Pranuthi Tenali
Saurabh Mathur
Erik Blasch
Kristian Kersting
S. Natarajan
39
1
0
05 Mar 2024
A Pseudo-Semantic Loss for Autoregressive Models with Logical
  Constraints
A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints
Kareem Ahmed
Kai-Wei Chang
Guy Van den Broeck
53
11
0
06 Dec 2023
Image Inpainting via Tractable Steering of Diffusion Models
Image Inpainting via Tractable Steering of Diffusion Models
Hoang Trung-Dung
Mathias Niepert
Guy Van den Broeck
DiffM
TPM
51
17
0
28 Nov 2023
SynJax: Structured Probability Distributions for JAX
SynJax: Structured Probability Distributions for JAX
Miloš Stanojević
Laurent Sartran
SyDa
24
4
0
07 Aug 2023
End-to-End Supervised Multilabel Contrastive Learning
End-to-End Supervised Multilabel Contrastive Learning
A. Sajedi
Samir Khaki
Konstantinos N. Plataniotis
Mahdi S. Hosseini
SSL
36
8
0
08 Jul 2023
Scalable Neural-Probabilistic Answer Set Programming
Scalable Neural-Probabilistic Answer Set Programming
Arseny Skryagin
Daniel Ochs
Devendra Singh Dhami
Kristian Kersting
47
5
0
14 Jun 2023
Compositional Probabilistic and Causal Inference using Tractable Circuit
  Models
Compositional Probabilistic and Causal Inference using Tractable Circuit Models
Benjie Wang
Marta Kwiatkowska
TPM
36
7
0
17 Apr 2023
Bayesian Structure Scores for Probabilistic Circuits
Bayesian Structure Scores for Probabilistic Circuits
Yang Yang
G. Gala
Robert Peharz
TPM
27
7
0
23 Feb 2023
Probabilistic Circuits That Know What They Don't Know
Probabilistic Circuits That Know What They Don't Know
Fabrizio G. Ventola
Steven Braun
Zhongjie Yu
Martin Mundt
Kristian Kersting
UQCV
TPM
37
7
0
13 Feb 2023
DeeProb-kit: a Python Library for Deep Probabilistic Modelling
DeeProb-kit: a Python Library for Deep Probabilistic Modelling
Lorenzo Loconte
G. Gala
GP
BDL
11
1
0
08 Dec 2022
Certifying Fairness of Probabilistic Circuits
Certifying Fairness of Probabilistic Circuits
Nikil Selvam
Guy Van den Broeck
YooJung Choi
FaML
TPM
15
6
0
05 Dec 2022
Anomaly Detection using Generative Models and Sum-Product Networks in
  Mammography Scans
Anomaly Detection using Generative Models and Sum-Product Networks in Mammography Scans
Marc Dietrichstein
David Major
Martin Trapp
M. Wimmer
Dimitrios Lenis
Philip Winter
Astrid Berg
Theresa Neubauer
Katja Bühler
MedIm
20
4
0
12 Oct 2022
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Hoang Trung-Dung
Honghua Zhang
Guy Van den Broeck
TPM
25
25
0
10 Oct 2022
Continuous Mixtures of Tractable Probabilistic Models
Continuous Mixtures of Tractable Probabilistic Models
Alvaro H. C. Correia
G. Gala
Erik Quaeghebeur
Cassio de Campos
Robert Peharz
TPM
19
18
0
21 Sep 2022
Semantic Probabilistic Layers for Neuro-Symbolic Learning
Semantic Probabilistic Layers for Neuro-Symbolic Learning
Kareem Ahmed
Stefano Teso
Kai-Wei Chang
Guy Van den Broeck
Antonio Vergari
TPM
18
78
0
01 Jun 2022
Dynamic Programming in Rank Space: Scaling Structured Inference with
  Low-Rank HMMs and PCFGs
Dynamic Programming in Rank Space: Scaling Structured Inference with Low-Rank HMMs and PCFGs
Aaron Courville
Wei Liu
Kewei Tu
26
8
0
01 May 2022
Tractable Boolean and Arithmetic Circuits
Tractable Boolean and Arithmetic Circuits
Adnan Darwiche
TPM
46
12
0
07 Feb 2022
Neuro-Symbolic Entropy Regularization
Neuro-Symbolic Entropy Regularization
Kareem Ahmed
Eric Wang
Kai-Wei Chang
Guy Van den Broeck
52
22
0
25 Jan 2022
Lossless Compression with Probabilistic Circuits
Lossless Compression with Probabilistic Circuits
Hoang Trung-Dung
Stephan Mandt
Guy Van den Broeck
TPM
27
21
0
23 Nov 2021
Solving Marginal MAP Exactly by Probabilistic Circuit Transformations
Solving Marginal MAP Exactly by Probabilistic Circuit Transformations
YooJung Choi
Tal Friedman
Guy Van den Broeck
TPM
35
11
0
08 Nov 2021
A Taxonomy for Inference in Causal Model Families
A Taxonomy for Inference in Causal Model Families
Matej Zevcević
Devendra Singh Dhami
Kristian Kersting
31
1
0
22 Oct 2021
SLASH: Embracing Probabilistic Circuits into Neural Answer Set
  Programming
SLASH: Embracing Probabilistic Circuits into Neural Answer Set Programming
Arseny Skryagin
Wolfgang Stammer
Daniel Ochs
Devendra Singh Dhami
Kristian Kersting
NAI
33
6
0
07 Oct 2021
Sum-Product-Attention Networks: Leveraging Self-Attention in
  Probabilistic Circuits
Sum-Product-Attention Networks: Leveraging Self-Attention in Probabilistic Circuits
Zhongjie Yu
Devendra Singh Dhami
Kristian Kersting
TPM
3DPC
LRM
26
0
0
14 Sep 2021
Structural Learning of Probabilistic Sentential Decision Diagrams under
  Partial Closed-World Assumption
Structural Learning of Probabilistic Sentential Decision Diagrams under Partial Closed-World Assumption
Alessandro Antonucci
Alessandro Facchini
Lilith Mattei
NAI
TPM
24
2
0
26 Jul 2021
Image Modeling with Deep Convolutional Gaussian Mixture Models
Image Modeling with Deep Convolutional Gaussian Mixture Models
A. Gepperth
Benedikt Pfülb
BDL
VLM
36
7
0
19 Apr 2021
Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits
Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits
Federico Cerutti
Lance M. Kaplan
Angelika Kimmig
Murat Sensoy
TPM
27
14
0
22 Feb 2021
The Tractability of SHAP-Score-Based Explanations over Deterministic and
  Decomposable Boolean Circuits
The Tractability of SHAP-Score-Based Explanations over Deterministic and Decomposable Boolean Circuits
Marcelo Arenas
Pablo Barceló
Mikaël Monet
FAtt
41
8
0
28 Jul 2020
Deep Residual Mixture Models
Deep Residual Mixture Models
Perttu Hämäläinen
Martin Trapp
Tuure Saloheimo
Arno Solin
36
8
0
22 Jun 2020
1