75
11

A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints

Abstract

Neuro-symbolic AI bridges the gap between purely symbolic and neural approaches to learning. This often requires maximizing the likelihood of a symbolic constraint w.r.t the neural network's output distribution. Such output distributions are typically assumed to be fully-factorized. This limits the applicability of neuro-symbolic learning to the more expressive autoregressive distributions, e.g., transformers. Under such distributions, computing the likelihood of even simple constraints is #P-hard. Instead of attempting to enforce the constraint on the entire output distribution, we propose to do so on a random, local approximation thereof. More precisely, we optimize the likelihood of the constraint under a pseudolikelihood-based approximation centered around a model sample. Our approximation is factorized, allowing the reuse of solutions to sub-problems, a main tenet for efficiently computing neuro-symbolic losses. Moreover, it is a local, high-fidelity approximation of the likelihood, exhibiting low entropy and KL-divergence around the model sample. We evaluate our approach on Sudoku and shortest-path prediction cast as autoregressive generation, and observe that we greatly improve upon the base model's ability to predict logically-consistent outputs. We also evaluate on the task of detoxifying large language models. Using a simple constraint disallowing a list of toxic words, we are able to steer the model's outputs away from toxic generations, achieving SoTA detoxification compared to previous approaches.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.