ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.02428
  4. Cited By
Normalizing Flows on Tori and Spheres

Normalizing Flows on Tori and Spheres

6 February 2020
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
    TPM
ArXivPDFHTML

Papers citing "Normalizing Flows on Tori and Spheres"

50 / 102 papers shown
Title
Ergodic Generative Flows
Ergodic Generative Flows
Leo Maxime Brunswic
Mateo Clemente
Rui Heng Yang
Adam Sigal
Amir Rasouli
Yinchuan Li
47
0
0
06 May 2025
Riemannian Neural Geodesic Interpolant
Riemannian Neural Geodesic Interpolant
Jiawen Wu
Bingguang Chen
Yuyi Zhou
Qi Meng
Rongchan Zhu
Zhi-Ming Ma
29
0
0
22 Apr 2025
Spherical Tree-Sliced Wasserstein Distance
Spherical Tree-Sliced Wasserstein Distance
Hoang V. Tran
Thanh T. Chu
K. Nguyen
Trang Pham
Tam Le
Trung Quoc Nguyen
OT
63
3
0
14 Mar 2025
NeuMC -- a package for neural sampling for lattice field theories
Piotr Bialas
P. Korcyl
T. Stebel
Dawid Zapolski
39
0
0
14 Mar 2025
Flows on convex polytopes
Flows on convex polytopes
Tomek Diederen
Nicola Zamboni
50
0
0
13 Mar 2025
Riemann2^22: Learning Riemannian Submanifolds from Riemannian Data
Leonel Rozo
Miguel González-Duque
Noémie Jaquier
Søren Hauberg
65
1
0
07 Mar 2025
Provably Efficient Exploration in Reward Machines with Low Regret
Provably Efficient Exploration in Reward Machines with Low Regret
Hippolyte Bourel
Anders Jonsson
Odalric-Ambrym Maillard
Chenxiao Ma
M. S. Talebi
34
0
0
26 Dec 2024
Projected Neural Differential Equations for Learning Constrained
  Dynamics
Projected Neural Differential Equations for Learning Constrained Dynamics
Alistair J R White
Anna Buttner
Maximilian Gelbrecht
Valentin Duruisseaux
Niki Kilbertus
Frank Hellmann
Niklas Boers
48
0
0
31 Oct 2024
Training Neural Samplers with Reverse Diffusive KL Divergence
Training Neural Samplers with Reverse Diffusive KL Divergence
Jiajun He
Wenlin Chen
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
47
4
0
16 Oct 2024
Neural Product Importance Sampling via Warp Composition
Neural Product Importance Sampling via Warp Composition
Joey Litalien
Miloš Hašan
Fujun Luan
Krishna Mullia
Iliyan Georgiev
31
0
0
12 Sep 2024
Efficient mapping of phase diagrams with conditional Boltzmann
  Generators
Efficient mapping of phase diagrams with conditional Boltzmann Generators
Maximilian Schebek
Michele Invernizzi
Frank Noé
Jutta Rogal
52
8
0
18 Jun 2024
Multi-level Interaction Modeling for Protein Mutational Effect
  Prediction
Multi-level Interaction Modeling for Protein Mutational Effect Prediction
Yuanle Mo
Xin Hong
Bowen Gao
Yinjun Jia
Yanyan Lan
AI4CE
34
2
0
28 May 2024
Fast and Unified Path Gradient Estimators for Normalizing Flows
Fast and Unified Path Gradient Estimators for Normalizing Flows
Lorenz Vaitl
Ludwig Winkler
Lorenz Richter
Pan Kessel
44
4
0
23 Mar 2024
Nonparametric Automatic Differentiation Variational Inference with
  Spline Approximation
Nonparametric Automatic Differentiation Variational Inference with Spline Approximation
Yuda Shao
Shan Yu
Tianshu Feng
34
1
0
10 Mar 2024
PPFlow: Target-aware Peptide Design with Torsional Flow Matching
PPFlow: Target-aware Peptide Design with Torsional Flow Matching
Haitao Lin
Odin Zhang
Huifeng Zhao
Dejun Jiang
Lirong Wu
Zicheng Liu
Yufei Huang
Stan Z. Li
62
12
0
05 Mar 2024
Conditional Normalizing Flows for Active Learning of Coarse-Grained
  Molecular Representations
Conditional Normalizing Flows for Active Learning of Coarse-Grained Molecular Representations
Henrik Schopmans
Pascal Friederich
AI4CE
33
1
0
02 Feb 2024
Equivariant Manifold Neural ODEs and Differential Invariants
Equivariant Manifold Neural ODEs and Differential Invariants
Emma Andersdotter
Fredrik Ohlsson
39
0
0
25 Jan 2024
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
M. Hanik
Gabriele Steidl
C. V. Tycowicz
GNN
MedIm
43
3
0
25 Jan 2024
Scalable Normalizing Flows Enable Boltzmann Generators for
  Macromolecules
Scalable Normalizing Flows Enable Boltzmann Generators for Macromolecules
Joseph C. Kim
David Bloore
Karan Kapoor
Jun Feng
Ming-Hong Hao
Mengdi Wang
50
7
0
08 Jan 2024
Contrastive Sequential Interaction Network Learning on Co-Evolving
  Riemannian Spaces
Contrastive Sequential Interaction Network Learning on Co-Evolving Riemannian Spaces
Li Sun
Junda Ye
Jiawei Zhang
Yong Yang
Mingsheng Liu
Feiyang Wang
Philip S. Yu
54
5
0
02 Jan 2024
Learning Distributions on Manifolds with Free-form Flows
Learning Distributions on Manifolds with Free-form Flows
Peter Sorrenson
Felix Dräxler
Armand Rousselot
Sander Hummerich
Ullrich Kothe
DRL
AI4CE
34
2
0
15 Dec 2023
Unbiasing Enhanced Sampling on a High-dimensional Free Energy Surface
  with Deep Generative Model
Unbiasing Enhanced Sampling on a High-dimensional Free Energy Surface with Deep Generative Model
Yikai Liu
Tushar K. Ghosh
Guang Lin
Ming Chen
DiffM
40
1
0
14 Dec 2023
Topological Obstructions and How to Avoid Them
Topological Obstructions and How to Avoid Them
Babak Esmaeili
Robin Walters
Heiko Zimmermann
Jan-Willem van de Meent
AI4CE
31
3
0
12 Dec 2023
Flow Symmetrization for Parameterized Constrained Diffeomorphisms
Flow Symmetrization for Parameterized Constrained Diffeomorphisms
Aalok Gangopadhyay
Dwip Dalal
Progyan Das
Shanmuganathan Raman
48
0
0
11 Dec 2023
Transition Path Sampling with Boltzmann Generator-based MCMC Moves
Transition Path Sampling with Boltzmann Generator-based MCMC Moves
Michael Plainer
Hannes Stärk
Charlotte Bunne
Stephan Günnemann
31
6
0
08 Dec 2023
Canonical normalizing flows for manifold learning
Canonical normalizing flows for manifold learning
Kyriakos Flouris
E. Konukoglu
DRL
67
7
0
19 Oct 2023
Riemannian Residual Neural Networks
Riemannian Residual Neural Networks
Isay Katsman
Eric Chen
Sidhanth Holalkere
Anna Asch
Aaron Lou
Ser-Nam Lim
Christopher De Sa
26
10
0
16 Oct 2023
Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion
  Processes
Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes
Jaehyeong Jo
Sung Ju Hwang
DiffM
42
9
0
11 Oct 2023
Conditional normalizing flows for IceCube event reconstruction
Conditional normalizing flows for IceCube event reconstruction
Yu-Hsiang Lan
BDL
14
2
0
28 Sep 2023
Training normalizing flows with computationally intensive target
  probability distributions
Training normalizing flows with computationally intensive target probability distributions
P. Białas
P. Korcyl
T. Stebel
18
5
0
25 Aug 2023
SE(3) Equivariant Augmented Coupling Flows
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
47
23
0
20 Aug 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
34
6
0
04 Aug 2023
Stabilized Neural Differential Equations for Learning Dynamics with
  Explicit Constraints
Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints
Alistair J R White
Niki Kilbertus
Maximilian Gelbrecht
Niklas Boers
22
6
0
16 Jun 2023
Spontaneous Symmetry Breaking in Generative Diffusion Models
Spontaneous Symmetry Breaking in Generative Diffusion Models
G. Raya
L. Ambrogioni
DiffM
17
30
0
31 May 2023
Confronting Ambiguity in 6D Object Pose Estimation via Score-Based
  Diffusion on SE(3)
Confronting Ambiguity in 6D Object Pose Estimation via Score-Based Diffusion on SE(3)
Tsu-Ching Hsiao
Haoming Chen
Hsuan-Kung Yang
Chun-Yi Lee
DiffM
23
7
0
25 May 2023
SINCERE: Sequential Interaction Networks representation learning on
  Co-Evolving RiEmannian manifolds
SINCERE: Sequential Interaction Networks representation learning on Co-Evolving RiEmannian manifolds
Junda Ye
Zhongbao Zhang
Li Sun
Yang Yan
Feiyang Wang
Fuxin Ren
30
6
0
06 May 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
47
4
0
21 Apr 2023
Implicit representation priors meet Riemannian geometry for Bayesian
  robotic grasping
Implicit representation priors meet Riemannian geometry for Bayesian robotic grasping
Norman Marlier
Julien Gustin
O. Bruls
Gilles Louppe
36
0
0
18 Apr 2023
Delving into Discrete Normalizing Flows on SO(3) Manifold for
  Probabilistic Rotation Modeling
Delving into Discrete Normalizing Flows on SO(3) Manifold for Probabilistic Rotation Modeling
Yulin Liu
Haoran Liu
Yingda Yin
Yang Wang
Baoquan Chen
Heru Wang
32
13
0
08 Apr 2023
Accurate Free Energy Estimations of Molecular Systems Via Flow-based
  Targeted Free Energy Perturbation
Accurate Free Energy Estimations of Molecular Systems Via Flow-based Targeted Free Energy Perturbation
Soo-Jung Lee
Amr H. Mahmoud
M. Lill
35
0
0
23 Feb 2023
Flow Matching on General Geometries
Flow Matching on General Geometries
Ricky T. Q. Chen
Y. Lipman
AI4CE
34
67
0
07 Feb 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
44
27
0
26 Jan 2023
normflows: A PyTorch Package for Normalizing Flows
normflows: A PyTorch Package for Normalizing Flows
Vincent Stimper
David Liu
Andrew Campbell
V. Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
AI4CE
24
56
0
26 Jan 2023
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
Seongmin Hong
I. Park
S. Chun
43
7
0
08 Dec 2022
Denoising Deep Generative Models
Denoising Deep Generative Models
G. Loaiza-Ganem
Brendan Leigh Ross
Luhuan Wu
John P. Cunningham
Jesse C. Cresswell
Anthony L. Caterini
DiffM
36
5
0
30 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Learning Riemannian Stable Dynamical Systems via Diffeomorphisms
Learning Riemannian Stable Dynamical Systems via Diffeomorphisms
Jiechao Zhang
Hadi Beik-Mohammadi
Leonel Rozo
28
15
0
06 Nov 2022
Atlas flow : compatible local structures on the manifold
Atlas flow : compatible local structures on the manifold
Taejin Paik
Jaemin Park
J. Park
39
0
0
24 Oct 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
38
77
0
03 Aug 2022
Matching Normalizing Flows and Probability Paths on Manifolds
Matching Normalizing Flows and Probability Paths on Manifolds
Heli Ben-Hamu
Samuel N. Cohen
Joey Bose
Brandon Amos
Aditya Grover
Maximilian Nickel
Ricky T. Q. Chen
Y. Lipman
63
39
0
11 Jul 2022
123
Next