Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.02428
Cited By
Normalizing Flows on Tori and Spheres
6 February 2020
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Normalizing Flows on Tori and Spheres"
50 / 102 papers shown
Title
Ergodic Generative Flows
Leo Maxime Brunswic
Mateo Clemente
Rui Heng Yang
Adam Sigal
Amir Rasouli
Yinchuan Li
47
0
0
06 May 2025
Riemannian Neural Geodesic Interpolant
Jiawen Wu
Bingguang Chen
Yuyi Zhou
Qi Meng
Rongchan Zhu
Zhi-Ming Ma
29
0
0
22 Apr 2025
Spherical Tree-Sliced Wasserstein Distance
Hoang V. Tran
Thanh T. Chu
K. Nguyen
Trang Pham
Tam Le
Trung Quoc Nguyen
OT
63
3
0
14 Mar 2025
NeuMC -- a package for neural sampling for lattice field theories
Piotr Bialas
P. Korcyl
T. Stebel
Dawid Zapolski
39
0
0
14 Mar 2025
Flows on convex polytopes
Tomek Diederen
Nicola Zamboni
50
0
0
13 Mar 2025
Riemann
2
^2
2
: Learning Riemannian Submanifolds from Riemannian Data
Leonel Rozo
Miguel González-Duque
Noémie Jaquier
Søren Hauberg
65
1
0
07 Mar 2025
Provably Efficient Exploration in Reward Machines with Low Regret
Hippolyte Bourel
Anders Jonsson
Odalric-Ambrym Maillard
Chenxiao Ma
M. S. Talebi
34
0
0
26 Dec 2024
Projected Neural Differential Equations for Learning Constrained Dynamics
Alistair J R White
Anna Buttner
Maximilian Gelbrecht
Valentin Duruisseaux
Niki Kilbertus
Frank Hellmann
Niklas Boers
48
0
0
31 Oct 2024
Training Neural Samplers with Reverse Diffusive KL Divergence
Jiajun He
Wenlin Chen
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
47
4
0
16 Oct 2024
Neural Product Importance Sampling via Warp Composition
Joey Litalien
Miloš Hašan
Fujun Luan
Krishna Mullia
Iliyan Georgiev
31
0
0
12 Sep 2024
Efficient mapping of phase diagrams with conditional Boltzmann Generators
Maximilian Schebek
Michele Invernizzi
Frank Noé
Jutta Rogal
52
8
0
18 Jun 2024
Multi-level Interaction Modeling for Protein Mutational Effect Prediction
Yuanle Mo
Xin Hong
Bowen Gao
Yinjun Jia
Yanyan Lan
AI4CE
34
2
0
28 May 2024
Fast and Unified Path Gradient Estimators for Normalizing Flows
Lorenz Vaitl
Ludwig Winkler
Lorenz Richter
Pan Kessel
44
4
0
23 Mar 2024
Nonparametric Automatic Differentiation Variational Inference with Spline Approximation
Yuda Shao
Shan Yu
Tianshu Feng
34
1
0
10 Mar 2024
PPFlow: Target-aware Peptide Design with Torsional Flow Matching
Haitao Lin
Odin Zhang
Huifeng Zhao
Dejun Jiang
Lirong Wu
Zicheng Liu
Yufei Huang
Stan Z. Li
62
12
0
05 Mar 2024
Conditional Normalizing Flows for Active Learning of Coarse-Grained Molecular Representations
Henrik Schopmans
Pascal Friederich
AI4CE
33
1
0
02 Feb 2024
Equivariant Manifold Neural ODEs and Differential Invariants
Emma Andersdotter
Fredrik Ohlsson
39
0
0
25 Jan 2024
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
M. Hanik
Gabriele Steidl
C. V. Tycowicz
GNN
MedIm
43
3
0
25 Jan 2024
Scalable Normalizing Flows Enable Boltzmann Generators for Macromolecules
Joseph C. Kim
David Bloore
Karan Kapoor
Jun Feng
Ming-Hong Hao
Mengdi Wang
50
7
0
08 Jan 2024
Contrastive Sequential Interaction Network Learning on Co-Evolving Riemannian Spaces
Li Sun
Junda Ye
Jiawei Zhang
Yong Yang
Mingsheng Liu
Feiyang Wang
Philip S. Yu
54
5
0
02 Jan 2024
Learning Distributions on Manifolds with Free-form Flows
Peter Sorrenson
Felix Dräxler
Armand Rousselot
Sander Hummerich
Ullrich Kothe
DRL
AI4CE
34
2
0
15 Dec 2023
Unbiasing Enhanced Sampling on a High-dimensional Free Energy Surface with Deep Generative Model
Yikai Liu
Tushar K. Ghosh
Guang Lin
Ming Chen
DiffM
40
1
0
14 Dec 2023
Topological Obstructions and How to Avoid Them
Babak Esmaeili
Robin Walters
Heiko Zimmermann
Jan-Willem van de Meent
AI4CE
31
3
0
12 Dec 2023
Flow Symmetrization for Parameterized Constrained Diffeomorphisms
Aalok Gangopadhyay
Dwip Dalal
Progyan Das
Shanmuganathan Raman
48
0
0
11 Dec 2023
Transition Path Sampling with Boltzmann Generator-based MCMC Moves
Michael Plainer
Hannes Stärk
Charlotte Bunne
Stephan Günnemann
31
6
0
08 Dec 2023
Canonical normalizing flows for manifold learning
Kyriakos Flouris
E. Konukoglu
DRL
67
7
0
19 Oct 2023
Riemannian Residual Neural Networks
Isay Katsman
Eric Chen
Sidhanth Holalkere
Anna Asch
Aaron Lou
Ser-Nam Lim
Christopher De Sa
26
10
0
16 Oct 2023
Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes
Jaehyeong Jo
Sung Ju Hwang
DiffM
42
9
0
11 Oct 2023
Conditional normalizing flows for IceCube event reconstruction
Yu-Hsiang Lan
BDL
14
2
0
28 Sep 2023
Training normalizing flows with computationally intensive target probability distributions
P. Białas
P. Korcyl
T. Stebel
18
5
0
25 Aug 2023
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
47
23
0
20 Aug 2023
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
34
6
0
04 Aug 2023
Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints
Alistair J R White
Niki Kilbertus
Maximilian Gelbrecht
Niklas Boers
22
6
0
16 Jun 2023
Spontaneous Symmetry Breaking in Generative Diffusion Models
G. Raya
L. Ambrogioni
DiffM
17
30
0
31 May 2023
Confronting Ambiguity in 6D Object Pose Estimation via Score-Based Diffusion on SE(3)
Tsu-Ching Hsiao
Haoming Chen
Hsuan-Kung Yang
Chun-Yi Lee
DiffM
23
7
0
25 May 2023
SINCERE: Sequential Interaction Networks representation learning on Co-Evolving RiEmannian manifolds
Junda Ye
Zhongbao Zhang
Li Sun
Yang Yan
Feiyang Wang
Fuxin Ren
30
6
0
06 May 2023
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
47
4
0
21 Apr 2023
Implicit representation priors meet Riemannian geometry for Bayesian robotic grasping
Norman Marlier
Julien Gustin
O. Bruls
Gilles Louppe
36
0
0
18 Apr 2023
Delving into Discrete Normalizing Flows on SO(3) Manifold for Probabilistic Rotation Modeling
Yulin Liu
Haoran Liu
Yingda Yin
Yang Wang
Baoquan Chen
Heru Wang
32
13
0
08 Apr 2023
Accurate Free Energy Estimations of Molecular Systems Via Flow-based Targeted Free Energy Perturbation
Soo-Jung Lee
Amr H. Mahmoud
M. Lill
35
0
0
23 Feb 2023
Flow Matching on General Geometries
Ricky T. Q. Chen
Y. Lipman
AI4CE
34
67
0
07 Feb 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
44
27
0
26 Jan 2023
normflows: A PyTorch Package for Normalizing Flows
Vincent Stimper
David Liu
Andrew Campbell
V. Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
AI4CE
24
56
0
26 Jan 2023
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
Seongmin Hong
I. Park
S. Chun
43
7
0
08 Dec 2022
Denoising Deep Generative Models
G. Loaiza-Ganem
Brendan Leigh Ross
Luhuan Wu
John P. Cunningham
Jesse C. Cresswell
Anthony L. Caterini
DiffM
36
5
0
30 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Learning Riemannian Stable Dynamical Systems via Diffeomorphisms
Jiechao Zhang
Hadi Beik-Mohammadi
Leonel Rozo
28
15
0
06 Nov 2022
Atlas flow : compatible local structures on the manifold
Taejin Paik
Jaemin Park
J. Park
39
0
0
24 Oct 2022
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
38
77
0
03 Aug 2022
Matching Normalizing Flows and Probability Paths on Manifolds
Heli Ben-Hamu
Samuel N. Cohen
Joey Bose
Brandon Amos
Aditya Grover
Maximilian Nickel
Ricky T. Q. Chen
Y. Lipman
63
39
0
11 Jul 2022
1
2
3
Next