ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.02428
  4. Cited By
Normalizing Flows on Tori and Spheres

Normalizing Flows on Tori and Spheres

6 February 2020
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
    TPM
ArXivPDFHTML

Papers citing "Normalizing Flows on Tori and Spheres"

44 / 44 papers shown
Title
Ergodic Generative Flows
Ergodic Generative Flows
Leo Maxime Brunswic
Mateo Clemente
Rui Heng Yang
Adam Sigal
Amir Rasouli
Yinchuan Li
47
0
0
06 May 2025
Spherical Tree-Sliced Wasserstein Distance
Spherical Tree-Sliced Wasserstein Distance
Hoang V. Tran
Thanh T. Chu
K. Nguyen
Trang Pham
Tam Le
Trung Quoc Nguyen
OT
63
3
0
14 Mar 2025
Flows on convex polytopes
Flows on convex polytopes
Tomek Diederen
Nicola Zamboni
50
0
0
13 Mar 2025
Training Neural Samplers with Reverse Diffusive KL Divergence
Training Neural Samplers with Reverse Diffusive KL Divergence
Jiajun He
Wenlin Chen
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
47
4
0
16 Oct 2024
Fast and Unified Path Gradient Estimators for Normalizing Flows
Fast and Unified Path Gradient Estimators for Normalizing Flows
Lorenz Vaitl
Ludwig Winkler
Lorenz Richter
Pan Kessel
44
4
0
23 Mar 2024
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
M. Hanik
Gabriele Steidl
C. V. Tycowicz
GNN
MedIm
43
3
0
25 Jan 2024
Canonical normalizing flows for manifold learning
Canonical normalizing flows for manifold learning
Kyriakos Flouris
E. Konukoglu
DRL
67
7
0
19 Oct 2023
Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion
  Processes
Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes
Jaehyeong Jo
Sung Ju Hwang
DiffM
42
9
0
11 Oct 2023
Conditional normalizing flows for IceCube event reconstruction
Conditional normalizing flows for IceCube event reconstruction
Yu-Hsiang Lan
BDL
14
2
0
28 Sep 2023
SE(3) Equivariant Augmented Coupling Flows
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
47
23
0
20 Aug 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
34
6
0
04 Aug 2023
Confronting Ambiguity in 6D Object Pose Estimation via Score-Based
  Diffusion on SE(3)
Confronting Ambiguity in 6D Object Pose Estimation via Score-Based Diffusion on SE(3)
Tsu-Ching Hsiao
Haoming Chen
Hsuan-Kung Yang
Chun-Yi Lee
DiffM
23
7
0
25 May 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
47
4
0
21 Apr 2023
Implicit representation priors meet Riemannian geometry for Bayesian
  robotic grasping
Implicit representation priors meet Riemannian geometry for Bayesian robotic grasping
Norman Marlier
Julien Gustin
O. Bruls
Gilles Louppe
33
0
0
18 Apr 2023
Flow Matching on General Geometries
Flow Matching on General Geometries
Ricky T. Q. Chen
Y. Lipman
AI4CE
34
67
0
07 Feb 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
44
27
0
26 Jan 2023
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
Seongmin Hong
I. Park
S. Chun
43
7
0
08 Dec 2022
Denoising Deep Generative Models
Denoising Deep Generative Models
G. Loaiza-Ganem
Brendan Leigh Ross
Luhuan Wu
John P. Cunningham
Jesse C. Cresswell
Anthony L. Caterini
DiffM
36
5
0
30 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Learning Riemannian Stable Dynamical Systems via Diffeomorphisms
Learning Riemannian Stable Dynamical Systems via Diffeomorphisms
Jiechao Zhang
Hadi Beik-Mohammadi
Leonel Rozo
28
15
0
06 Nov 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
38
77
0
03 Aug 2022
Verifying the Union of Manifolds Hypothesis for Image Data
Verifying the Union of Manifolds Hypothesis for Image Data
Bradley Brown
Anthony L. Caterini
Brendan Leigh Ross
Jesse C. Cresswell
G. Loaiza-Ganem
44
39
0
06 Jul 2022
Learning Lattice Quantum Field Theories with Equivariant Continuous
  Flows
Learning Lattice Quantum Field Theories with Equivariant Continuous Flows
Mathis Gerdes
P. D. Haan
Corrado Rainone
Roberto Bondesan
Miranda C. N. Cheng
AI4CE
24
40
0
01 Jul 2022
Spherical Sliced-Wasserstein
Spherical Sliced-Wasserstein
Clément Bonet
P. Berg
Nicolas Courty
Françcois Septier
Lucas Drumetz
Minh Pham
33
27
0
17 Jun 2022
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal
  Optimization adjoint with Moving Speed
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal Optimization adjoint with Moving Speed
Shian Du
Yihong Luo
Wei Chen
Jian Xu
Delu Zeng
32
7
0
19 Mar 2022
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
31
44
0
17 Mar 2022
Spherical Poisson Point Process Intensity Function Modeling and
  Estimation with Measure Transport
Spherical Poisson Point Process Intensity Function Modeling and Estimation with Measure Transport
T. L. J. Ng
A. Zammit‐Mangion
31
3
0
24 Jan 2022
IKFlow: Generating Diverse Inverse Kinematics Solutions
IKFlow: Generating Diverse Inverse Kinematics Solutions
Barrett Ames
Jeremy Morgan
George Konidaris
14
34
0
17 Nov 2021
Moser Flow: Divergence-based Generative Modeling on Manifolds
Moser Flow: Divergence-based Generative Modeling on Manifolds
N. Rozen
Aditya Grover
Maximilian Nickel
Y. Lipman
DRL
AI4CE
27
57
0
18 Aug 2021
Riemannian Convex Potential Maps
Riemannian Convex Potential Maps
Samuel N. Cohen
Brandon Amos
Y. Lipman
25
22
0
18 Jun 2021
Implicit-PDF: Non-Parametric Representation of Probability Distributions
  on the Rotation Manifold
Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold
Kieran A. Murphy
Carlos Esteves
Varun Jampani
Srikumar Ramalingam
A. Makadia
20
76
0
10 Jun 2021
Continuous normalizing flows on manifolds
Continuous normalizing flows on manifolds
Luca Falorsi
BDL
AI4CE
30
10
0
14 Mar 2021
Variational Determinant Estimation with Spherical Normalizing Flows
Variational Determinant Estimation with Spherical Normalizing Flows
Simon Passenheim
Emiel Hoogeboom
BDL
31
1
0
24 Dec 2020
ChartPointFlow for Topology-Aware 3D Point Cloud Generation
ChartPointFlow for Topology-Aware 3D Point Cloud Generation
Takumi Kimura
Takashi Matsubara
K. Uehara
3DPC
31
8
0
04 Dec 2020
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
83
3
0
22 Oct 2020
Riemannian Continuous Normalizing Flows
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
27
119
0
18 Jun 2020
Neural Manifold Ordinary Differential Equations
Neural Manifold Ordinary Differential Equations
Aaron Lou
Derek Lim
Isay Katsman
Leo Huang
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
BDL
AI4CE
23
79
0
18 Jun 2020
Ordering Dimensions with Nested Dropout Normalizing Flows
Ordering Dimensions with Nested Dropout Normalizing Flows
Artur Bekasov
Iain Murray
DRL
28
5
0
15 Jun 2020
Manifold GPLVMs for discovering non-Euclidean latent structure in neural
  data
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
Kristopher T. Jensen
Ta-Chu Kao
Marco Tripodi
Guillaume Hennequin
DRL
22
31
0
12 Jun 2020
Neural Ordinary Differential Equations on Manifolds
Neural Ordinary Differential Equations on Manifolds
Luca Falorsi
Patrick Forré
BDL
AI4CE
14
33
0
11 Jun 2020
SoftFlow: Probabilistic Framework for Normalizing Flow on Manifolds
SoftFlow: Probabilistic Framework for Normalizing Flow on Manifolds
Hyeongju Kim
Hyeonseung Lee
Woohyun Kang
Joun Yeop Lee
N. Kim
3DPC
25
114
0
08 Jun 2020
The Power Spherical distribution
The Power Spherical distribution
Nicola De Cao
Wilker Aziz
24
28
0
08 Jun 2020
Targeted free energy estimation via learned mappings
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
27
86
0
12 Feb 2020
Cubic-Spline Flows
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
53
57
0
05 Jun 2019
1