ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.09852
24
2

Learning Distributions on Manifolds with Free-form Flows

15 December 2023
Peter Sorrenson
Felix Dräxler
Armand Rousselot
Sander Hummerich
Ullrich Kothe
    DRL
    AI4CE
ArXivPDFHTML
Abstract

We propose Manifold Free-Form Flows (M-FFF), a simple new generative model for data on manifolds. The existing approaches to learning a distribution on arbitrary manifolds are expensive at inference time, since sampling requires solving a differential equation. Our method overcomes this limitation by sampling in a single function evaluation. The key innovation is to optimize a neural network via maximum likelihood on the manifold, possible by adapting the free-form flow framework to Riemannian manifolds. M-FFF is straightforwardly adapted to any manifold with a known projection. It consistently matches or outperforms previous single-step methods specialized to specific manifolds, and is competitive with multi-step methods with typically two orders of magnitude faster inference speed. We make our code public at https://github.com/vislearn/FFF.

View on arXiv
Comments on this paper