Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.11554
Cited By
Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro
24 December 2019
Du Phan
Neeraj Pradhan
M. Jankowiak
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro"
43 / 143 papers shown
Title
Compositional Score Modeling for Simulation-based Inference
Tomas Geffner
George Papamakarios
A. Mnih
72
24
0
28 Sep 2022
Liesel: A Probabilistic Programming Framework for Developing Semi-Parametric Regression Models and Custom Bayesian Inference Algorithms
Hannes Riebl
P. Wiemann
Thomas Kneib
8
2
0
22 Sep 2022
Improved Marginal Unbiased Score Expansion (MUSE) via Implicit Differentiation
M. Millea
18
4
0
21 Sep 2022
Peer-group Behaviour Analytics of Windows Authentications Events Using Hierarchical Bayesian Modelling
I. Hawryluk
H. Hoeltgebaum
Cole Sodja
Tyler Lalicker
Joshua Neil
21
0
0
20 Sep 2022
BayesLDM: A Domain-Specific Language for Probabilistic Modeling of Longitudinal Data
Ka-Yee Tung
Steven De La Torre
Mohamed El Mistiri
Rebecca Braga De Braganca
Eric B. Hekler
Misha Pavel
D. Rivera
Pedja Klasnja
D. Spruijt-Metz
Benjamin M. Marlin
19
1
0
12 Sep 2022
Language Model Cascades
David Dohan
Winnie Xu
Aitor Lewkowycz
Jacob Austin
David Bieber
...
Henryk Michalewski
Rif A. Saurous
Jascha Narain Sohl-Dickstein
Kevin Patrick Murphy
Charles Sutton
ReLM
LRM
38
99
0
21 Jul 2022
Strong Lensing Source Reconstruction Using Continuous Neural Fields
S. Mishra-Sharma
Ge Yang
69
13
0
29 Jun 2022
Neural Implicit Manifold Learning for Topology-Aware Density Estimation
Brendan Leigh Ross
G. Loaiza-Ganem
Anthony L. Caterini
Jesse C. Cresswell
AI4CE
33
2
0
22 Jun 2022
Scaling multi-species occupancy models to large citizen science datasets
Martin Ingram
Damjan Vukcevic
N. Golding
4
0
0
17 Jun 2022
Bayesian Active Learning for Scanning Probe Microscopy: from Gaussian Processes to Hypothesis Learning
M. Ziatdinov
Yongtao Liu
K. Kelley
Rama K Vasudevan
Sergei V. Kalinin
AI4CE
44
49
0
30 May 2022
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
R. Grumitt
B. Dai
U. Seljak
BDL
29
12
0
27 May 2022
Tensor Program Optimization with Probabilistic Programs
Junru Shao
Xiyou Zhou
Siyuan Feng
Bohan Hou
Ruihang Lai
Hongyi Jin
Wuwei Lin
Masahiro Masuda
Cody Hao Yu
Tianqi Chen
37
29
0
26 May 2022
PyRelationAL: a python library for active learning research and development
P. Scherer
Thomas Gaudelet
Alison Pouplin
Alice Del Vecchio
S. SurajM
Oliver Bolton
Jyothish Soman
J. Taylor-King
Lindsay Edwards
KELM
19
1
0
23 May 2022
Does the Market of Citations Reward Reproducible Work?
Edward Raff
HAI
CML
14
12
0
08 Apr 2022
Statistical Model Criticism of Variational Auto-Encoders
Claartje Barkhof
Wilker Aziz
DRL
24
3
0
06 Apr 2022
Active learning in open experimental environments: selecting the right information channel(s) based on predictability in deep kernel learning
M. Ziatdinov
Yongtao Liu
Sergei V. Kalinin
14
9
0
18 Mar 2022
Discovering Inductive Bias with Gibbs Priors: A Diagnostic Tool for Approximate Bayesian Inference
Luca Rendsburg
Agustinus Kristiadi
Philipp Hennig
U. V. Luxburg
16
2
0
07 Mar 2022
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography
Francisca Vasconcelos
Bobby He
Nalini Singh
Yee Whye Teh
BDL
OOD
UQCV
29
12
0
22 Feb 2022
Loss-calibrated expectation propagation for approximate Bayesian decision-making
Michael J. Morais
Jonathan W. Pillow
44
6
0
10 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
Fast characterization of inducible regions of atrial fibrillation models with multi-fidelity Gaussian process classification
Lia Gander
Simone Pezzuto
A. Gharaviri
Rolf Krause
P. Perdikaris
F. Sahli Costabal
8
13
0
15 Dec 2021
ProbNum: Probabilistic Numerics in Python
Jonathan Wenger
Nicholas Kramer
Marvin Pfortner
Jonathan Schmidt
Nathanael Bosch
...
A. Gessner
Toni Karvonen
F. Briol
Maren Mahsereci
Philipp Hennig
52
17
0
03 Dec 2021
Toward an Idiomatic Framework for Cognitive Robotics
Malte Rørmose Damgaard
Rasmus Pedersen
T. Bak
LM&Ro
16
3
0
25 Nov 2021
Locally Differentially Private Bayesian Inference
Tejas D. Kulkarni
Joonas Jälkö
Samuel Kaski
Antti Honkela
48
2
0
27 Oct 2021
PriorVAE: Encoding spatial priors with VAEs for small-area estimation
Elizaveta Semenova
Yidan Xu
A. Howes
T. Rashid
Samir Bhatt
Swapnil Mishra
Seth Flaxman
17
11
0
20 Oct 2021
Automatically Differentiable Random Coefficient Logistic Demand Estimation
Andrew Chia
13
0
0
08 Jun 2021
Efficient and Generalizable Tuning Strategies for Stochastic Gradient MCMC
Jeremie Coullon
Leah F. South
Christopher Nemeth
18
12
0
27 May 2021
Correlated Dynamics in Marketing Sensitivities
Ryan Dew
Yuhao Fan
8
1
0
23 Apr 2021
D3p -- A Python Package for Differentially-Private Probabilistic Programming
Lukas Prediger
Niki Loppi
Samuel Kaski
Antti Honkela
19
6
0
22 Mar 2021
A Probabilistic State Space Model for Joint Inference from Differential Equations and Data
Jonathan Schmidt
Nicholas Kramer
Philipp Hennig
8
23
0
18 Mar 2021
Gaussian processes meet NeuralODEs: A Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data
Mohamed Aziz Bhouri
P. Perdikaris
22
20
0
04 Mar 2021
High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces
David Eriksson
M. Jankowiak
31
134
0
27 Feb 2021
All You Need is a Good Functional Prior for Bayesian Deep Learning
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Maurizio Filippone
OOD
BDL
28
56
0
25 Nov 2020
Conditional independence by typing
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
Matthijs Vákár
27
14
0
22 Oct 2020
A Fully Bayesian Gradient-Free Supervised Dimension Reduction Method using Gaussian Processes
Raphael Gautier
Piyush Pandita
Sayan Ghosh
D. Mavris
10
3
0
08 Aug 2020
Estimating Model Uncertainty of Neural Networks in Sparse Information Form
Jongseo Lee
Matthias Humt
Jianxiang Feng
Rudolph Triebel
BDL
UQCV
38
46
0
20 Jun 2020
Rethinking Parameter Counting in Deep Models: Effective Dimensionality Revisited
Wesley J. Maddox
Gregory W. Benton
A. Wilson
12
61
0
04 Mar 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
24
483
0
12 Feb 2020
Automatic structured variational inference
L. Ambrogioni
Kate Lin
Emily Fertig
Sharad Vikram
Max Hinne
Dave Moore
Marcel van Gerven
BDL
16
29
0
03 Feb 2020
Joint Distributions for TensorFlow Probability
Dan Piponi
Dave Moore
Joshua V. Dillon
GP
27
16
0
22 Jan 2020
FunMC: A functional API for building Markov Chains
Pavel Sountsov
Alexey Radul
Srinivas Vasudevan
21
1
0
14 Jan 2020
Mixed Hamiltonian Monte Carlo for Mixed Discrete and Continuous Variables
Guangyao Zhou
19
19
0
11 Sep 2019
A Kernel Stein Test for Comparing Latent Variable Models
Heishiro Kanagawa
Wittawat Jitkrittum
Lester W. Mackey
Kenji Fukumizu
A. Gretton
13
12
0
01 Jul 2019
Previous
1
2
3