Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.11554
Cited By
Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro
24 December 2019
Du Phan
Neeraj Pradhan
M. Jankowiak
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro"
50 / 143 papers shown
Title
Graph-accelerated Markov Chain Monte Carlo using Approximate Samples
Leo L. Duan
Anirban Bhattacharya
25
1
0
25 Jan 2024
Principled Gradient-based Markov Chain Monte Carlo for Text Generation
Li Du
Afra Amini
Lucas Torroba Hennigen
Xinyan Velocity Yu
Jason Eisner
Holden Lee
Ryan Cotterell
BDL
23
1
0
29 Dec 2023
PINN surrogate of Li-ion battery models for parameter inference. Part II: Regularization and application of the pseudo-2D model
M. Hassanaly
Peter J. Weddle
Ryan N. King
Subhayan De
Alireza Doostan
Corey R. Randall
Eric J. Dufek
Andrew M. Colclasure
Kandler Smith
25
6
0
28 Dec 2023
Do Bayesian Neural Networks Improve Weapon System Predictive Maintenance?
Michael L. Potter
Miru D. Jun
17
0
0
16 Dec 2023
RJHMC-Tree for Exploration of the Bayesian Decision Tree Posterior
Jodie A. Cochrane
Adrian G. Wills
Sarah J. Johnson
21
2
0
04 Dec 2023
Data-driven Prior Learning for Bayesian Optimisation
Sigrid Passano Hellan
Christopher G. Lucas
Nigel H. Goddard
26
0
0
24 Nov 2023
Diffusion models for probabilistic programming
Simon Dirmeier
Fernando Pérez-Cruz
58
0
0
01 Nov 2023
Uncertainty quantification and out-of-distribution detection using surjective normalizing flows
Simon Dirmeier
Ye Hong
Yanan Xin
Fernando Pérez-Cruz
UQCV
28
1
0
01 Nov 2023
SigFormer: Signature Transformers for Deep Hedging
Anh Tong
Thanh Nguyen-Tang
Dongeun Lee
Toan M. Tran
Jaesik Choi
AIFin
24
5
0
20 Oct 2023
Towards Understanding Sycophancy in Language Models
Mrinank Sharma
Meg Tong
Tomasz Korbak
David Duvenaud
Amanda Askell
...
Oliver Rausch
Nicholas Schiefer
Da Yan
Miranda Zhang
Ethan Perez
213
192
0
20 Oct 2023
Neural Likelihood Approximation for Integer Valued Time Series Data
Luke O'Loughlin
John Maclean
Andrew Black
AI4TS
15
0
0
19 Oct 2023
On the Properties and Estimation of Pointwise Mutual Information Profiles
Paweł Czyż
Frederic Grabowski
Julia E. Vogt
N. Beerenwinkel
Alexander Marx
24
1
0
16 Oct 2023
Fishnets: Information-Optimal, Scalable Aggregation for Sets and Graphs
T. Lucas Makinen
Justin Alsing
Benjamin Dan Wandelt
GNN
FedML
24
3
0
05 Oct 2023
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
24
1
0
26 Sep 2023
Detect Everything with Few Examples
Xinyu Zhang
Yuting Wang
Abdeslam Boularias
ObjD
VLM
29
13
0
22 Sep 2023
Harnessing Collective Intelligence Under a Lack of Cultural Consensus
Necdet Gurkan
Jordan W. Suchow
25
2
0
18 Sep 2023
Choosing a Proxy Metric from Past Experiments
Nilesh Tripuraneni
Lee Richardson
Alexander DÁmour
Jacopo Soriano
Steve Yadlowsky
21
7
0
14 Sep 2023
Target Detection on Hyperspectral Images Using MCMC and VI Trained Bayesian Neural Networks
Daniel Ries
Jason Adams
J. Zollweg
BDL
11
1
0
11 Aug 2023
SynJax: Structured Probability Distributions for JAX
Miloš Stanojević
Laurent Sartran
SyDa
13
4
0
07 Aug 2023
Rapid and Scalable Bayesian AB Testing
S. Chennu
Andrew Maher
C. Pangerl
Subash Prabanantham
Jae Hyeon Bae
Jamie Martin
Bud Goswami
35
0
0
27 Jul 2023
A Novel Application of Conditional Normalizing Flows: Stellar Age Inference with Gyrochronology
P. Van-Lane
J. Speagle
S. Douglas
21
1
0
17 Jul 2023
Real-time whole-heart electromechanical simulations using Latent Neural Ordinary Differential Equations
M. Salvador
M. Strocchi
Francesco Regazzoni
Luca Dede'
Steven Niederer
A. Quarteroni
AI4CE
17
3
0
08 Jun 2023
Correction of Errors in Preference Ratings from Automated Metrics for Text Generation
Jan Deriu
Pius von Daniken
Don Tuggener
Mark Cieliebak
29
2
0
06 Jun 2023
Structured Voronoi Sampling
Afra Amini
Li Du
Ryan Cotterell
DiffM
27
1
0
05 Jun 2023
An information field theory approach to Bayesian state and parameter estimation in dynamical systems
Kairui Hao
Ilias Bilionis
14
4
0
03 Jun 2023
Deep learning and MCMC with aggVAE for shifting administrative boundaries: mapping malaria prevalence in Kenya
Elizaveta Semenova
Swapnil Mishra
Samir Bhatt
Seth Flaxman
H Juliette T Unwin
20
1
0
31 May 2023
Uncertainty and Structure in Neural Ordinary Differential Equations
Katharina Ott
Michael Tiemann
Philipp Hennig
AI4CE
26
5
0
22 May 2023
PriorCVAE: scalable MCMC parameter inference with Bayesian deep generative modelling
Elizaveta Semenova
Prakhar Verma
Max Cairney-Leeming
Arno Solin
Samir Bhatt
Seth Flaxman
BDL
22
3
0
09 Apr 2023
Bayesian neural networks via MCMC: a Python-based tutorial
Rohitash Chandra
Royce Chen
Joshua Simmons
BDL
31
10
0
02 Apr 2023
Fluctuation without dissipation: Microcanonical Langevin Monte Carlo
Jakob Robnik
U. Seljak
46
6
0
31 Mar 2023
Bayesian Quantification with Black-Box Estimators
Albert Ziegler
Paweł Czyż
UQCV
23
0
0
17 Feb 2023
Fortuna: A Library for Uncertainty Quantification in Deep Learning
Gianluca Detommaso
Alberto Gasparin
Michele Donini
Matthias Seeger
A. Wilson
Cédric Archambeau
UQCV
BDL
36
14
0
08 Feb 2023
Federated Variational Inference Methods for Structured Latent Variable Models
Conor Hassan
Roberto Salomone
Kerrie Mengersen
BDL
FedML
21
4
0
07 Feb 2023
Automatically Marginalized MCMC in Probabilistic Programming
Jinlin Lai
Javier Burroni
Hui Guan
Daniel Sheldon
24
3
0
01 Feb 2023
Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference
Ryan P. Kelly
David J. Nott
David T. Frazier
D. Warne
Christopher C. Drovandi
25
10
0
31 Jan 2023
Contextual Causal Bayesian Optimisation
Vahan Arsenyan
Antoine Grosnit
Haitham Bou-Ammar
CML
30
2
0
29 Jan 2023
Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty Quantification
A. Alberts
Ilias Bilionis
32
12
0
18 Jan 2023
Microcanonical Hamiltonian Monte Carlo
Jakob Robnik
G. Luca
E. Silverstein
U. Seljak
32
14
0
16 Dec 2022
The Ordered Matrix Dirichlet for State-Space Models
Niklas Stoehr
Benjamin J. Radford
Ryan Cotterell
Aaron Schein
24
5
0
08 Dec 2022
An Empirical Analysis of the Advantages of Finite- v.s. Infinite-Width Bayesian Neural Networks
Jiayu Yao
Yaniv Yacoby
Beau Coker
Weiwei Pan
Finale Doshi-Velez
24
1
0
16 Nov 2022
Bayesian Networks for the robust and unbiased prediction of depression and its symptoms utilizing speech and multimodal data
Salvatore Fara
Orlaith Hickey
A. Georgescu
S. Goria
Emilia Molimpakis
N. Cummins
18
5
0
09 Nov 2022
Fully Bayesian inference for latent variable Gaussian process models
Suraj Yerramilli
Akshay Iyer
Wei Chen
D. Apley
13
2
0
04 Nov 2022
DPVIm: Differentially Private Variational Inference Improved
Joonas Jälkö
Lukas Prediger
Antti Honkela
Samuel Kaski
34
3
0
28 Oct 2022
Improvement-Focused Causal Recourse (ICR)
Gunnar Konig
Timo Freiesleben
Moritz Grosse-Wentrup
CML
31
15
0
27 Oct 2022
Efficient Data Mosaicing with Simulation-based Inference
Andrew Gambardella
Youngjun Choi
Doyo Choi
Jinjoon Lee
23
0
0
26 Oct 2022
Cox-Hawkes: doubly stochastic spatiotemporal Poisson processes
Xenia Miscouridou
Samir Bhatt
G. Mohler
Seth Flaxman
Swapnil Mishra
19
4
0
21 Oct 2022
Transport Elliptical Slice Sampling
A. Cabezas
Christopher Nemeth
21
8
0
19 Oct 2022
Joint control variate for faster black-box variational inference
Xi Wang
Tomas Geffner
Justin Domke
BDL
DRL
19
0
0
13 Oct 2022
Robust Neural Posterior Estimation and Statistical Model Criticism
Daniel Ward
Patrick W Cannon
Mark Beaumont
Matteo Fasiolo
Sebastian M. Schmon
27
36
0
12 Oct 2022
An Ordinal Latent Variable Model of Conflict Intensity
Niklas Stoehr
Lucas Torroba Hennigen
Josef Valvoda
Robert West
Ryan Cotterell
Aaron Schein
16
8
0
08 Oct 2022
Previous
1
2
3
Next