ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.02762
  4. Cited By
Normalizing Flows for Probabilistic Modeling and Inference

Normalizing Flows for Probabilistic Modeling and Inference

5 December 2019
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
    TPM
    AI4CE
ArXivPDFHTML

Papers citing "Normalizing Flows for Probabilistic Modeling and Inference"

50 / 328 papers shown
Title
Moser Flow: Divergence-based Generative Modeling on Manifolds
Moser Flow: Divergence-based Generative Modeling on Manifolds
N. Rozen
Aditya Grover
Maximilian Nickel
Y. Lipman
DRL
AI4CE
27
57
0
18 Aug 2021
Insights from Generative Modeling for Neural Video Compression
Insights from Generative Modeling for Neural Video Compression
Ruihan Yang
Yibo Yang
Joseph Marino
Stephan Mandt
VGen
35
16
0
28 Jul 2021
Copula-Based Normalizing Flows
Copula-Based Normalizing Flows
M. Laszkiewicz
Johannes Lederer
Asja Fischer
32
7
0
15 Jul 2021
Structured Denoising Diffusion Models in Discrete State-Spaces
Structured Denoising Diffusion Models in Discrete State-Spaces
Jacob Austin
Daniel D. Johnson
Jonathan Ho
Daniel Tarlow
Rianne van den Berg
DiffM
44
851
0
07 Jul 2021
Featurized Density Ratio Estimation
Featurized Density Ratio Estimation
Kristy Choi
Madeline Liao
Stefano Ermon
TPM
22
22
0
05 Jul 2021
Truncated Marginal Neural Ratio Estimation
Truncated Marginal Neural Ratio Estimation
Benjamin Kurt Miller
A. Cole
Patrick Forré
Gilles Louppe
Christoph Weniger
39
37
0
02 Jul 2021
Differentiable Particle Filters through Conditional Normalizing Flow
Differentiable Particle Filters through Conditional Normalizing Flow
Xiongjie Chen
Hao Wen
Yunpeng Li
23
20
0
01 Jul 2021
A Survey on Neural Speech Synthesis
A Survey on Neural Speech Synthesis
Xu Tan
Tao Qin
Frank Soong
Tie-Yan Liu
AI4TS
18
352
0
29 Jun 2021
Transflower: probabilistic autoregressive dance generation with
  multimodal attention
Transflower: probabilistic autoregressive dance generation with multimodal attention
Guillermo Valle Pérez
G. Henter
Jonas Beskow
A. Holzapfel
Pierre-Yves Oudeyer
Simon Alexanderson
30
42
0
25 Jun 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
30
10
0
25 Jun 2021
Task-agnostic Continual Learning with Hybrid Probabilistic Models
Task-agnostic Continual Learning with Hybrid Probabilistic Models
Polina Kirichenko
Mehrdad Farajtabar
Dushyant Rao
Balaji Lakshminarayanan
Nir Levine
Ang Li
Huiyi Hu
A. Wilson
Razvan Pascanu
VLM
BDL
CLL
27
19
0
24 Jun 2021
Black Box Variational Bayesian Model Averaging
Black Box Variational Bayesian Model Averaging
Vojtech Kejzlar
Shrijita Bhattacharya
Mookyong Son
T. Maiti
BDL
24
3
0
23 Jun 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To
  Pyramidal Bayesian Models
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
36
2
0
23 Jun 2021
Riemannian Convex Potential Maps
Riemannian Convex Potential Maps
Samuel N. Cohen
Brandon Amos
Y. Lipman
23
22
0
18 Jun 2021
A deep generative model for probabilistic energy forecasting in power
  systems: normalizing flows
A deep generative model for probabilistic energy forecasting in power systems: normalizing flows
Jonathan Dumas
Antoine Wehenkel
Bertrand Cornélusse
Antonio Sutera
AI4TS
32
82
0
17 Jun 2021
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
Jie Jessie Ren
Stanislav Fort
J. Liu
Abhijit Guha Roy
Shreyas Padhy
Balaji Lakshminarayanan
UQCV
33
216
0
16 Jun 2021
A Flow-Based Neural Network for Time Domain Speech Enhancement
A Flow-Based Neural Network for Time Domain Speech Enhancement
Martin Strauss
B. Edler
20
33
0
16 Jun 2021
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
  Normalizing Flows
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
31
81
0
09 Jun 2021
Marginalizable Density Models
Marginalizable Density Models
D. Gilboa
Ari Pakman
Thibault Vatter
BDL
32
5
0
08 Jun 2021
Concave Utility Reinforcement Learning: the Mean-Field Game Viewpoint
Concave Utility Reinforcement Learning: the Mean-Field Game Viewpoint
M. Geist
Julien Pérolat
Mathieu Laurière
Romuald Elie
Sarah Perrin
Olivier Bachem
Rémi Munos
Olivier Pietquin
37
62
0
07 Jun 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
28
1
0
03 Jun 2021
Normalizing Flows for Knockoff-free Controlled Feature Selection
Normalizing Flows for Knockoff-free Controlled Feature Selection
Derek Hansen
Brian Manzo
Jeffrey Regier
OOD
35
5
0
03 Jun 2021
Principal Component Density Estimation for Scenario Generation Using
  Normalizing Flows
Principal Component Density Estimation for Scenario Generation Using Normalizing Flows
Eike Cramer
Alexander Mitsos
Raúl Tempone
Manuel Dahmen
29
13
0
21 Apr 2021
Understanding Event-Generation Networks via Uncertainties
Understanding Event-Generation Networks via Uncertainties
Marco Bellagente
Manuel Haussmann
Michel Luchmann
Tilman Plehn
BDL
25
55
0
09 Apr 2021
3D Shape Generation and Completion through Point-Voxel Diffusion
3D Shape Generation and Completion through Point-Voxel Diffusion
Linqi Zhou
Yilun Du
Jiajun Wu
DiffM
38
512
0
08 Apr 2021
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
Achille Thin
Yazid Janati
Sylvain Le Corff
Charles Ollion
Arnaud Doucet
Alain Durmus
Eric Moulines
C. Robert
32
7
0
17 Mar 2021
Continuous normalizing flows on manifolds
Continuous normalizing flows on manifolds
Luca Falorsi
BDL
AI4CE
30
10
0
14 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
481
0
08 Mar 2021
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
Sequential Neural Posterior and Likelihood Approximation
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
34
33
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
185
0
12 Jan 2021
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them
  on Images
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
56
337
0
20 Nov 2020
Self Normalizing Flows
Self Normalizing Flows
Thomas Anderson Keller
Jorn W. T. Peters
P. Jaini
Emiel Hoogeboom
Patrick Forré
Max Welling
30
14
0
14 Nov 2020
Can We Trust Deep Speech Prior?
Can We Trust Deep Speech Prior?
Ying Shi
Haolin Chen
Zhiyuan Tang
Lantian Li
Dong Wang
Jiqing Han
27
1
0
04 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
28
34
0
03 Nov 2020
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Jason J. Yu
Konstantinos G. Derpanis
Marcus A. Brubaker
TPM
32
41
0
26 Oct 2020
Multiscale Score Matching for Out-of-Distribution Detection
Multiscale Score Matching for Out-of-Distribution Detection
Ahsan Mahmood
Junier Oliva
M. Styner
OODD
22
30
0
25 Oct 2020
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
83
3
0
22 Oct 2020
Probabilistic Character Motion Synthesis using a Hierarchical Deep
  Latent Variable Model
Probabilistic Character Motion Synthesis using a Hierarchical Deep Latent Variable Model
Saeed Ghorbani
C. Wloka
Ali Etemad
M. Brubaker
N. Troje
3DV
36
31
0
20 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
25
14
0
07 Oct 2020
Novel and flexible parameter estimation methods for data-consistent
  inversion in mechanistic modeling
Novel and flexible parameter estimation methods for data-consistent inversion in mechanistic modeling
Timothy Rumbell
Jaimit Parikh
J. Kozloski
V. Gurev
8
5
0
17 Sep 2020
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
39
48
0
24 Aug 2020
Time Series Source Separation with Slow Flows
Time Series Source Separation with Slow Flows
Edouard Pineau
S. Razakarivony
Thomas Bonald
BDL
AI4TS
41
2
0
20 Jul 2020
Discrete Point Flow Networks for Efficient Point Cloud Generation
Discrete Point Flow Networks for Efficient Point Cloud Generation
Roman Klokov
Edmond Boyer
Jakob Verbeek
3DPC
26
107
0
20 Jul 2020
Deep composition of tensor-trains using squared inverse Rosenblatt
  transports
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
26
33
0
14 Jul 2020
Conditional Set Generation with Transformers
Conditional Set Generation with Transformers
Adam R. Kosiorek
Hyunjik Kim
Danilo Jimenez Rezende
24
40
0
26 Jun 2020
Relative gradient optimization of the Jacobian term in unsupervised deep
  learning
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
19
22
0
26 Jun 2020
The Gaussian equivalence of generative models for learning with shallow
  neural networks
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
41
100
0
25 Jun 2020
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless
  Compression
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression
Rianne van den Berg
A. Gritsenko
Mostafa Dehghani
C. Sønderby
Tim Salimans
27
59
0
22 Jun 2020
Previous
1234567
Next