ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.13556
  4. Cited By
Convolutional Conditional Neural Processes

Convolutional Conditional Neural Processes

29 October 2019
Jonathan Gordon
W. Bruinsma
Andrew Y. K. Foong
James Requeima
Yann Dubois
Richard Turner
    BDL
ArXivPDFHTML

Papers citing "Convolutional Conditional Neural Processes"

27 / 27 papers shown
Title
MetaMolGen: A Neural Graph Motif Generation Model for De Novo Molecular Design
MetaMolGen: A Neural Graph Motif Generation Model for De Novo Molecular Design
Zimo Yan
Jie Zhang
Zheng Xie
Chang-rui Liu
Yang Liu
Yiping Song
74
0
0
22 Apr 2025
Sparse Gaussian Neural Processes
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDL
UQCV
154
0
0
02 Apr 2025
Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
Yang Ji
Ying Sun
Hengshu Zhu
124
1
0
17 Mar 2025
Geometric Neural Process Fields
Geometric Neural Process Fields
Wenzhe Yin
Zehao Xiao
Jiayi Shen
Yunlu Chen
Cees G. M. Snoek
Jan-Jakob Sonke
E. Gavves
AI4CE
128
0
0
04 Feb 2025
Noise-Aware Differentially Private Regression via Meta-Learning
Noise-Aware Differentially Private Regression via Meta-Learning
Ossi Raisa
Stratis Markou
Matthew Ashman
W. Bruinsma
Marlon Tobaben
Antti Honkela
Richard Turner
160
1
0
12 Jun 2024
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
56
77
0
19 Jun 2019
Fast and Flexible Multi-Task Classification Using Conditional Neural
  Adaptive Processes
Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes
James Requeima
Jonathan Gordon
J. Bronskill
Sebastian Nowozin
Richard Turner
66
242
0
18 Jun 2019
On the Limitations of Representing Functions on Sets
On the Limitations of Representing Functions on Sets
E. Wagstaff
F. Fuchs
Martin Engelcke
Ingmar Posner
Michael A. Osborne
113
164
0
25 Jan 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
88
440
0
17 Jan 2019
PointConv: Deep Convolutional Networks on 3D Point Clouds
PointConv: Deep Convolutional Networks on 3D Point Clouds
Wenxuan Wu
Zhongang Qi
Fuxin Li
3DPC
114
1,560
0
17 Nov 2018
Neural Processes
Neural Processes
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
BDL
UQCV
GP
87
514
0
04 Jul 2018
Conditional Neural Processes
Conditional Neural Processes
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
UQCV
BDL
85
700
0
04 Jul 2018
Meta-Learning Probabilistic Inference For Prediction
Meta-Learning Probabilistic Inference For Prediction
Jonathan Gordon
J. Bronskill
Matthias Bauer
Sebastian Nowozin
Richard Turner
BDL
110
264
0
24 May 2018
Image Transformer
Image Transformer
Niki Parmar
Ashish Vaswani
Jakob Uszkoreit
Lukasz Kaiser
Noam M. Shazeer
Alexander Ku
Dustin Tran
ViT
122
1,678
0
15 Feb 2018
On the Generalization of Equivariance and Convolution in Neural Networks
  to the Action of Compact Groups
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
107
498
0
11 Feb 2018
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric
  Space
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
C. Qi
L. Yi
Hao Su
Leonidas Guibas
3DPC
3DV
329
11,062
0
07 Jun 2017
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
376
2,459
0
10 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
806
11,866
0
09 Mar 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
  Likelihood and Other Modifications
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
93
939
0
19 Jan 2017
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH
3DPC
3DV
PINN
463
14,264
0
02 Dec 2016
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
1.3K
14,543
0
07 Oct 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
150
158
0
20 May 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
142
1,934
0
24 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,426
0
10 Dec 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
302
4,167
0
21 May 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.7K
76,917
0
18 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
1