ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02694
  4. Cited By
Deep Semi-Supervised Anomaly Detection
v1v2 (latest)

Deep Semi-Supervised Anomaly Detection

6 June 2019
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Deep Semi-Supervised Anomaly Detection"

50 / 267 papers shown
Title
Shifting Transformation Learning for Out-of-Distribution Detection
Shifting Transformation Learning for Out-of-Distribution Detection
Sina Mohseni
Arash Vahdat
J. Yadawa
OODD
67
9
0
07 Jun 2021
Data augmentation and pre-trained networks for extremely low data
  regimes unsupervised visual inspection
Data augmentation and pre-trained networks for extremely low data regimes unsupervised visual inspection
Pierre Gutierrez
Antoine Cordier
Thais Caldeira
Théophile Sautory
64
4
0
02 Jun 2021
Feature Encoding with AutoEncoders for Weakly-supervised Anomaly
  Detection
Feature Encoding with AutoEncoders for Weakly-supervised Anomaly Detection
Yingjie Zhou
Xuchen Song
Yanru Zhang
Fanxing Liu
Ce Zhu
Lingqiao Liu
UQCV
114
105
0
22 May 2021
Multi-Perspective Anomaly Detection
Multi-Perspective Anomaly Detection
Peter Jakob
M. Madan
Tobias Schmid-Schirling
Abhinav Valada
44
13
0
20 May 2021
Do We Really Need to Learn Representations from In-domain Data for
  Outlier Detection?
Do We Really Need to Learn Representations from In-domain Data for Outlier Detection?
Zhisheng Xiao
Qing Yan
Y. Amit
OODUQCV
76
18
0
19 May 2021
DOC3-Deep One Class Classification using Contradictions
DOC3-Deep One Class Classification using Contradictions
Sauptik Dhar
Bernardo Gonzalez Torres
125
3
0
17 May 2021
Understanding the Effect of Bias in Deep Anomaly Detection
Understanding the Effect of Bias in Deep Anomaly Detection
Ziyu Ye
Yuxin Chen
Haitao Zheng
53
18
0
16 May 2021
Discriminative-Generative Dual Memory Video Anomaly Detection
Discriminative-Generative Dual Memory Video Anomaly Detection
Xin Guo
Zhongming Jin
Chong Chen
Helei Nie
Jianqiang Huang
Deng Cai
Xiaofei He
Xiansheng Hua
66
5
0
29 Apr 2021
Supervised Anomaly Detection via Conditional Generative Adversarial
  Network and Ensemble Active Learning
Supervised Anomaly Detection via Conditional Generative Adversarial Network and Ensemble Active Learning
Zhi Chen
Jiang Duan
Li Kang
Guoping Qiu
AI4CE
86
34
0
24 Apr 2021
Fine-grained Anomaly Detection via Multi-task Self-Supervision
Fine-grained Anomaly Detection via Multi-task Self-Supervision
Loic Jezequel
Ngoc-Son Vu
Jean Beaudet
A. Histace
111
6
0
20 Apr 2021
OpenGAN: Open-Set Recognition via Open Data Generation
OpenGAN: Open-Set Recognition via Open Data Generation
Shu Kong
Deva Ramanan
97
220
0
07 Apr 2021
Semi-supervised Variational Temporal Convolutional Network for IoT
  Communication Multi-anomaly Detection
Semi-supervised Variational Temporal Convolutional Network for IoT Communication Multi-anomaly Detection
Yan Xu
Yongliang Cheng
DRL
21
5
0
05 Apr 2021
Multi-Class Data Description for Out-of-distribution Detection
Multi-Class Data Description for Out-of-distribution Detection
Dongha Lee
Sehun Yu
Hwanjo Yu
OODD
68
39
0
02 Apr 2021
RLAD: Time Series Anomaly Detection through Reinforcement Learning and
  Active Learning
RLAD: Time Series Anomaly Detection through Reinforcement Learning and Active Learning
Tong Wu
Jorge Ortiz
AI4TS
82
28
0
31 Mar 2021
Neural Transformation Learning for Deep Anomaly Detection Beyond Images
Neural Transformation Learning for Deep Anomaly Detection Beyond Images
Chen Qiu
Timo Pfrommer
Marius Kloft
Stephan Mandt
Maja R. Rudolph
ViTAI4TS
83
129
0
30 Mar 2021
Elsa: Energy-based learning for semi-supervised anomaly detection
Elsa: Energy-based learning for semi-supervised anomaly detection
Sungwon Han
Hyeonho Song
Seungeon Lee
Sungwon Park
M. Cha
85
12
0
29 Mar 2021
SSD: A Unified Framework for Self-Supervised Outlier Detection
SSD: A Unified Framework for Self-Supervised Outlier Detection
Vikash Sehwag
M. Chiang
Prateek Mittal
OODD
130
346
0
22 Mar 2021
Unsupervised Two-Stage Anomaly Detection
Unsupervised Two-Stage Anomaly Detection
Yunfei Liu
Chaoqun Zhuang
Feng Lu
111
30
0
22 Mar 2021
Image/Video Deep Anomaly Detection: A Survey
Image/Video Deep Anomaly Detection: A Survey
Bahram Mohammadi
M. Fathy
Mohammad Sabokrou
64
37
0
02 Mar 2021
Meta-learning One-class Classifiers with Eigenvalue Solvers for
  Supervised Anomaly Detection
Meta-learning One-class Classifiers with Eigenvalue Solvers for Supervised Anomaly Detection
Tomoharu Iwata
Atsutoshi Kumagai
51
2
0
01 Mar 2021
Few-shot Network Anomaly Detection via Cross-network Meta-learning
Few-shot Network Anomaly Detection via Cross-network Meta-learning
Kaize Ding
Qinghai Zhou
Hanghang Tong
Huan Liu
186
128
0
22 Feb 2021
Self-Taught Semi-Supervised Anomaly Detection on Upper Limb X-rays
Self-Taught Semi-Supervised Anomaly Detection on Upper Limb X-rays
A. Spahr
Behzad Bozorgtabar
Jean-Philippe Thiran
74
16
0
19 Feb 2021
FedAUX: Leveraging Unlabeled Auxiliary Data in Federated Learning
FedAUX: Leveraging Unlabeled Auxiliary Data in Federated Learning
Felix Sattler
Tim Korjakow
R. Rischke
Wojciech Samek
FedML
78
118
0
04 Feb 2021
Deep One-Class Classification via Interpolated Gaussian Descriptor
Deep One-Class Classification via Interpolated Gaussian Descriptor
Yuanhong Chen
Yu Tian
Guansong Pang
G. Carneiro
VLM
164
100
0
25 Jan 2021
Weakly-supervised Video Anomaly Detection with Robust Temporal Feature
  Magnitude Learning
Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning
Yu Tian
Guansong Pang
Yuanhong Chen
Rajvinder Singh
Johan Verjans
G. Carneiro
AI4TS
120
314
0
25 Jan 2021
Double-Adversarial Activation Anomaly Detection: Adversarial
  Autoencoders are Anomaly Generators
Double-Adversarial Activation Anomaly Detection: Adversarial Autoencoders are Anomaly Generators
Jan-Philipp Schulze
Philip Sperl
Konstantin Böttinger
73
4
0
12 Jan 2021
One-Class Classification: A Survey
One-Class Classification: A Survey
Pramuditha Perera
Poojan Oza
Vishal M. Patel
133
114
0
08 Jan 2021
Towards Fair Deep Anomaly Detection
Towards Fair Deep Anomaly Detection
Hongjing Zhang
Ian Davidson
FaML
128
40
0
29 Dec 2020
Semi-supervised novelty detection using ensembles with regularized
  disagreement
Semi-supervised novelty detection using ensembles with regularized disagreement
A. Tifrea
E. Stavarache
Fanny Yang
UQCV
87
6
0
10 Dec 2020
MOCCA: Multi-Layer One-Class ClassificAtion for Anomaly Detection
MOCCA: Multi-Layer One-Class ClassificAtion for Anomaly Detection
F. V. Massoli
Fabrizio Falchi
Alperen Kantarci
cSeymanur Akti
H. K. Ekenel
Giuseppe Amato
118
62
0
09 Dec 2020
ESAD: End-to-end Deep Semi-supervised Anomaly Detection
ESAD: End-to-end Deep Semi-supervised Anomaly Detection
Chaoqin Huang
Fei Ye
Peisen Zhao
Ya Zhang
Yanfeng Wang
Qi Tian
67
12
0
09 Dec 2020
Deep Unsupervised Image Anomaly Detection: An Information Theoretic
  Framework
Deep Unsupervised Image Anomaly Detection: An Information Theoretic Framework
Fei Ye
Huangjie Zheng
Chaoqin Huang
Ya Zhang
111
13
0
09 Dec 2020
A Review of Open-World Learning and Steps Toward Open-World Learning
  Without Labels
A Review of Open-World Learning and Steps Toward Open-World Learning Without Labels
Mohsen Jafarzadeh
A. Dhamija
Steve Cruz
Chunchun Li
T. Ahmad
Terrance E. Boult
VLMOffRL
94
9
0
25 Nov 2020
Multiresolution Knowledge Distillation for Anomaly Detection
Multiresolution Knowledge Distillation for Anomaly Detection
Mohammadreza Salehi
Niousha Sadjadi
Soroosh Baselizadeh
M. Rohban
Hamid R. Rabiee
152
448
0
22 Nov 2020
Crack Detection as a Weakly-Supervised Problem: Towards Achieving Less
  Annotation-Intensive Crack Detectors
Crack Detection as a Weakly-Supervised Problem: Towards Achieving Less Annotation-Intensive Crack Detectors
Yuki Inoue
Hiroto Nagayoshi
134
15
0
04 Nov 2020
Graph Fairing Convolutional Networks for Anomaly Detection
Graph Fairing Convolutional Networks for Anomaly Detection
Mahsa Mesgaran
A. Ben Hamza
69
25
0
20 Oct 2020
Anomaly Detection on X-Rays Using Self-Supervised Aggregation Learning
Anomaly Detection on X-Rays Using Self-Supervised Aggregation Learning
Behzad Bozorgtabar
Dwarikanath Mahapatra
Guillaume Vray
Jean-Philippe Thiran
51
9
0
19 Oct 2020
OneFlow: One-class flow for anomaly detection based on a minimal volume
  region
OneFlow: One-class flow for anomaly detection based on a minimal volume region
Łukasz Maziarka
Marek Śmieja
Marcin Sendera
Łukasz Struski
Jacek Tabor
Przemysław Spurek
79
6
0
06 Oct 2020
Deep Anomaly Detection by Residual Adaptation
Deep Anomaly Detection by Residual Adaptation
Lucas Deecke
Lukas Ruff
Robert A. Vandermeulen
Hakan Bilen
UQCV
92
4
0
05 Oct 2020
TimeAutoML: Autonomous Representation Learning for Multivariate
  Irregularly Sampled Time Series
TimeAutoML: Autonomous Representation Learning for Multivariate Irregularly Sampled Time Series
Yang Jiao
Kai Yang
Shaoyu Dou
Pan Luo
Sijia Liu
Dongjin Song
AI4TS
94
8
0
04 Oct 2020
A Unifying Review of Deep and Shallow Anomaly Detection
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
152
806
0
24 Sep 2020
Meta-AAD: Active Anomaly Detection with Deep Reinforcement Learning
Meta-AAD: Active Anomaly Detection with Deep Reinforcement Learning
Daochen Zha
Kwei-Herng Lai
Mingyang Wan
X. Hu
97
55
0
16 Sep 2020
Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
  Partially Labeled Anomaly Data
Toward Deep Supervised Anomaly Detection: Reinforcement Learning from Partially Labeled Anomaly Data
Guansong Pang
Anton Van Den Hengel
Chunhua Shen
LongBing Cao
OffRL
87
91
0
15 Sep 2020
Anomaly Detection by Recombining Gated Unsupervised Experts
Anomaly Detection by Recombining Gated Unsupervised Experts
Jan-Philipp Schulze
Philip Sperl
Konstantin Böttinger
87
1
0
31 Aug 2020
Estimating Example Difficulty Using Variance of Gradients
Estimating Example Difficulty Using Variance of Gradients
Chirag Agarwal
Daniel D'souza
Sara Hooker
306
111
0
26 Aug 2020
Self-Attentive Classification-Based Anomaly Detection in Unstructured
  Logs
Self-Attentive Classification-Based Anomaly Detection in Unstructured Logs
S. Nedelkoski
Jasmin Bogatinovski
Alexander Acker
Jorge Cardoso
O. Kao
70
131
0
21 Aug 2020
CSI: Novelty Detection via Contrastive Learning on Distributionally
  Shifted Instances
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
Jihoon Tack
Sangwoo Mo
Jongheon Jeong
Jinwoo Shin
OODD
89
608
0
16 Jul 2020
Deep Learning for Anomaly Detection: A Review
Deep Learning for Anomaly Detection: A Review
Guansong Pang
Chunhua Shen
LongBing Cao
Anton Van Den Hengel
200
951
0
06 Jul 2020
Explainable Deep One-Class Classification
Explainable Deep One-Class Classification
Philipp Liznerski
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Marius Kloft
Klaus-Robert Muller
103
199
0
03 Jul 2020
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Jihun Yi
Sungroh Yoon
213
387
0
29 Jun 2020
Previous
123456
Next