ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02694
  4. Cited By
Deep Semi-Supervised Anomaly Detection
v1v2 (latest)

Deep Semi-Supervised Anomaly Detection

6 June 2019
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Deep Semi-Supervised Anomaly Detection"

50 / 267 papers shown
Title
Adaptive Model Pooling for Online Deep Anomaly Detection from a Complex
  Evolving Data Stream
Adaptive Model Pooling for Online Deep Anomaly Detection from a Complex Evolving Data Stream
Susik Yoon
Youngjun Lee
Jae-Gil Lee
Byung Suk Lee
59
27
0
09 Jun 2022
DORA: Exploring Outlier Representations in Deep Neural Networks
DORA: Exploring Outlier Representations in Deep Neural Networks
Kirill Bykov
Mayukh Deb
Dennis Grinwald
Klaus-Robert Muller
Marina M.-C. Höhne
123
13
0
09 Jun 2022
Perturbation Learning Based Anomaly Detection
Perturbation Learning Based Anomaly Detection
Jinyu Cai
Jicong Fan
AAML
128
30
0
06 Jun 2022
Anomaly Detection with Test Time Augmentation and Consistency Evaluation
Anomaly Detection with Test Time Augmentation and Consistency Evaluation
Haowei He
Jiaye Teng
Yang Yuan
32
2
0
06 Jun 2022
Fake It Till You Make It: Towards Accurate Near-Distribution Novelty
  Detection
Fake It Till You Make It: Towards Accurate Near-Distribution Novelty Detection
Hossein Mirzaei
Mohammadreza Salehi
Sajjad Shahabi
E. Gavves
Cees G. M. Snoek
Mohammad Sabokrou
M. Rohban
OOD
80
6
0
28 May 2022
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero
  Outlier Images
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
Philipp Liznerski
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
UQCV
133
46
0
23 May 2022
PAC-Wrap: Semi-Supervised PAC Anomaly Detection
PAC-Wrap: Semi-Supervised PAC Anomaly Detection
Shuo Li
Xiayan Ji
Yan Sun
O. Sokolsky
Insup Lee
95
14
0
22 May 2022
Near out-of-distribution detection for low-resolution radar
  micro-Doppler signatures
Near out-of-distribution detection for low-resolution radar micro-Doppler signatures
Martin Bauw
Santiago Velasco-Forero
Jesús Angulo
C. Adnet
O. Airiau
OODD
88
5
0
12 May 2022
TracInAD: Measuring Influence for Anomaly Detection
TracInAD: Measuring Influence for Anomaly Detection
Hugo Thimonier
Fabrice Popineau
Arpad Rimmel
Bich-Liên Doan
Fabrice Daniel
TDI
103
7
0
03 May 2022
Anomaly Detection by Leveraging Incomplete Anomalous Knowledge with
  Anomaly-Aware Bidirectional GANs
Anomaly Detection by Leveraging Incomplete Anomalous Knowledge with Anomaly-Aware Bidirectional GANs
Bowen Tian
Qinliang Su
Jian Yin
65
18
0
28 Apr 2022
Feature anomaly detection system (FADS) for intelligent manufacturing
Feature anomaly detection system (FADS) for intelligent manufacturing
Anthony P. Garland
Kevin M. Potter
Matt Smith
25
3
0
21 Apr 2022
Anomaly Detection in Autonomous Driving: A Survey
Anomaly Detection in Autonomous Driving: A Survey
Daniel Bogdoll
Maximilian Nitsche
J. Marius Zöllner
82
122
0
17 Apr 2022
Semi-supervised anomaly detection algorithm based on KL divergence
  (SAD-KL)
Semi-supervised anomaly detection algorithm based on KL divergence (SAD-KL)
C. Lee
Kibae Lee
75
5
0
28 Mar 2022
Catching Both Gray and Black Swans: Open-set Supervised Anomaly
  Detection
Catching Both Gray and Black Swans: Open-set Supervised Anomaly Detection
Choubo Ding
Guansong Pang
Chunhua Shen
OOD
96
117
0
28 Mar 2022
Improving State-of-the-Art in One-Class Classification by Leveraging
  Unlabeled Data
Improving State-of-the-Art in One-Class Classification by Leveraging Unlabeled Data
F. Bagirov
Dmitry Ivanov
A. Shpilman
111
0
0
14 Mar 2022
Data-Efficient and Interpretable Tabular Anomaly Detection
Data-Efficient and Interpretable Tabular Anomaly Detection
C. Chang
Chang Jo Kim
Sercan O. Arik
Madeleine Udell
Tomas Pfister
56
20
0
03 Mar 2022
Data refinement for fully unsupervised visual inspection using
  pre-trained networks
Data refinement for fully unsupervised visual inspection using pre-trained networks
Antoine Cordier
Benjamin Missaoui
Pierre Gutierrez
82
5
0
25 Feb 2022
Latent Outlier Exposure for Anomaly Detection with Contaminated Data
Latent Outlier Exposure for Anomaly Detection with Contaminated Data
Chen Qiu
Aodong Li
Marius Kloft
Maja R. Rudolph
Stephan Mandt
91
59
0
16 Feb 2022
Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time
  Series
Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time Series
Enyan Dai
Jie Chen
BDLAI4TS
74
70
0
16 Feb 2022
Trustworthy Anomaly Detection: A Survey
Trustworthy Anomaly Detection: A Survey
Shuhan Yuan
Xintao Wu
FaML
151
8
0
15 Feb 2022
Deep Convolutional Autoencoder for Assessment of Anomalies in
  Multi-stream Sensor Data
Deep Convolutional Autoencoder for Assessment of Anomalies in Multi-stream Sensor Data
Anthony Geglio
Eisa Hedayati
M. Tascillo
Dyche Anderson
Jonathan Barker
T. Havens
ViTUQCV
25
3
0
15 Feb 2022
From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale
  Contrastive Learning Approach
From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach
Yu Zheng
Ming Jin
Yixin Liu
Lianhua Chi
Khoa T. Phan
Shirui Pan
Yi-Ping Phoebe Chen
76
13
0
11 Feb 2022
Training OOD Detectors in their Natural Habitats
Training OOD Detectors in their Natural Habitats
Julian Katz-Samuels
Julia B. Nakhleh
Robert D. Nowak
Yixuan Li
OODD
83
92
0
07 Feb 2022
Weighted Isolation and Random Cut Forest Algorithms for Anomaly
  Detection
Weighted Isolation and Random Cut Forest Algorithms for Anomaly Detection
Sijin Yeom
Jae-Hun Jung
13
1
0
01 Feb 2022
Little Help Makes a Big Difference: Leveraging Active Learning to
  Improve Unsupervised Time Series Anomaly Detection
Little Help Makes a Big Difference: Leveraging Active Learning to Improve Unsupervised Time Series Anomaly Detection
Hamza Bodor
Thai V. Hoang
Zonghua Zhang
AI4TS
27
5
0
25 Jan 2022
Application of Deep Reinforcement Learning to Payment Fraud
Application of Deep Reinforcement Learning to Payment Fraud
Siddharth Vimal
Kanishka Kayathwal
H. Wadhwa
Gaurav Dhama
AAMLOffRL
63
8
0
08 Dec 2021
Anomaly Detection in IR Images of PV Modules using Supervised
  Contrastive Learning
Anomaly Detection in IR Images of PV Modules using Supervised Contrastive Learning
Lukas Bommes
M. Hoffmann
C. Buerhop‐Lutz
Tobias Pickel
J. Hauch
Christoph J. Brabec
Andreas Maier
I. M. Peters
111
33
0
06 Dec 2021
Constrained Adaptive Projection with Pretrained Features for Anomaly
  Detection
Constrained Adaptive Projection with Pretrained Features for Anomaly Detection
Xingtai Gui
Di Wu
Yang Chang
Shicai Fan
36
5
0
05 Dec 2021
Efficient Anomaly Detection Using Self-Supervised Multi-Cue Tasks
Efficient Anomaly Detection Using Self-Supervised Multi-Cue Tasks
Loic Jezequel
Ngoc-Son Vu
Jean Beaudet
A. Histace
85
19
0
24 Nov 2021
PEDENet: Image Anomaly Localization via Patch Embedding and Density
  Estimation
PEDENet: Image Anomaly Localization via Patch Embedding and Density Estimation
Kaitai Zhang
Bin Wang
C.-C. Jay Kuo
51
21
0
29 Oct 2021
OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample
  Generation on the Boundary
OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
OODD
74
6
0
28 Oct 2021
Multi-Class Anomaly Detection
Multi-Class Anomaly Detection
Suresh Singh
Minwei Luo
Yu Li
48
1
0
28 Oct 2021
Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on
  Data Contamination
Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination
Jongmin Yu
Hyeontaek Oh
Minkyung Kim
Junsik Kim
49
10
0
28 Oct 2021
Anomaly-Injected Deep Support Vector Data Description for Text Outlier
  Detection
Anomaly-Injected Deep Support Vector Data Description for Text Outlier Detection
Zeyu You
Yichu Zhou
Tao Yang
Wei Fan
102
0
0
27 Oct 2021
A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution
  Detection: Solutions and Future Challenges
A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges
Mohammadreza Salehi
Hossein Mirzaei
Dan Hendrycks
Yixuan Li
M. Rohban
Mohammad Sabokrou
OOD
169
199
0
26 Oct 2021
TOD: GPU-accelerated Outlier Detection via Tensor Operations
TOD: GPU-accelerated Outlier Detection via Tensor Operations
Yue Zhao
George H. Chen
Zhihao Jia
AI4TS
106
8
0
26 Oct 2021
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
324
956
0
21 Oct 2021
A Semi-Supervised Approach for Abnormal Event Prediction on Large Operational Network Time-Series Data
A Semi-Supervised Approach for Abnormal Event Prediction on Large Operational Network Time-Series Data
Yijun Lin
Yao-Yi Chiang
AI4TS
54
1
0
14 Oct 2021
New Perspective on Progressive GANs Distillation for One-class Novelty Detection
Zhiwei Zhang
Yu Dong
Hanyu Peng
Shifeng Chen
70
0
0
15 Sep 2021
Generative and Contrastive Self-Supervised Learning for Graph Anomaly
  Detection
Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection
Yu Zheng
Ming Jin
Yixin Liu
Lianhua Chi
K. Phan
Yi-Ping Phoebe Chen
119
133
0
23 Aug 2021
Explainable Deep Few-shot Anomaly Detection with Deviation Networks
Explainable Deep Few-shot Anomaly Detection with Deviation Networks
Guansong Pang
Choubo Ding
Chunhua Shen
Anton Van Den Hengel
130
89
0
01 Aug 2021
Contrastive Predictive Coding for Anomaly Detection
Contrastive Predictive Coding for Anomaly Detection
Puck de Haan
Sindy Löwe
UQCVSSL
108
19
0
16 Jul 2021
Neural Contextual Anomaly Detection for Time Series
Neural Contextual Anomaly Detection for Time Series
Chris U. Carmona
Franccois-Xavier Aubet
Valentin Flunkert
Jan Gasthaus
BDLAI4TS
103
66
0
16 Jul 2021
Anomaly Detection and Automated Labeling for Voter Registration File
  Changes
Anomaly Detection and Automated Labeling for Voter Registration File Changes
S. Royston
Bennett D. Greenberg
Omeed Tavasoli
Courtenay V. Cotton
30
2
0
16 Jun 2021
A Comprehensive Survey on Graph Anomaly Detection with Deep Learning
A Comprehensive Survey on Graph Anomaly Detection with Deep Learning
Xiaoxiao Ma
Hongzhi Zhang
Shan Xue
Jian Yang
Chuan Zhou
Quan Z. Sheng
Hui Xiong
Leman Akoglu
GNNAI4TS
135
571
0
14 Jun 2021
Inverting Adversarially Robust Networks for Image Synthesis
Inverting Adversarially Robust Networks for Image Synthesis
Renan A. Rojas-Gomez
Raymond A. Yeh
Minh Do
A. Nguyen
68
5
0
13 Jun 2021
Anomalous Sound Detection Using a Binary Classification Model and Class
  Centroids
Anomalous Sound Detection Using a Binary Classification Model and Class Centroids
Ibuki Kuroyanagi
Tomoki Hayashi
K. Takeda
Tomoki Toda
56
8
0
11 Jun 2021
Self-supervise, Refine, Repeat: Improving Unsupervised Anomaly Detection
Self-supervise, Refine, Repeat: Improving Unsupervised Anomaly Detection
Chang Jo Kim
Kihyuk Sohn
Chun-Liang Li
Sercan O. Arik
Chen-Yu Lee
Tomas Pfister
74
21
0
11 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
95
32
0
09 Jun 2021
Deep Random Projection Outlyingness for Unsupervised Anomaly Detection
Deep Random Projection Outlyingness for Unsupervised Anomaly Detection
Martin Bauw
Santiago Velasco-Forero
Jesús Angulo
C. Adnet
O. Airiau
67
5
0
08 Jun 2021
Previous
123456
Next