ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.07636
25
3

DOC3-Deep One Class Classification using Contradictions

17 May 2021
Sauptik Dhar
Bernardo Gonzalez Torres
ArXivPDFHTML
Abstract

This paper introduces the notion of learning from contradictions (a.k.a Universum learning) for deep one class classification problems. We formalize this notion for the widely adopted one class large-margin loss, and propose the Deep One Class Classification using Contradictions (DOC3) algorithm. We show that learning from contradictions incurs lower generalization error by comparing the Empirical Rademacher Complexity (ERC) of DOC3 against its traditional inductive learning counterpart. Our empirical results demonstrate the efficacy of DOC3 compared to popular baseline algorithms on several real-life data sets.

View on arXiv
Comments on this paper