ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02694
  4. Cited By
Deep Semi-Supervised Anomaly Detection
v1v2 (latest)

Deep Semi-Supervised Anomaly Detection

6 June 2019
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Deep Semi-Supervised Anomaly Detection"

17 / 267 papers shown
Title
Understanding Anomaly Detection with Deep Invertible Networks through
  Hierarchies of Distributions and Features
Understanding Anomaly Detection with Deep Invertible Networks through Hierarchies of Distributions and Features
R. Schirrmeister
Yuxuan Zhou
T. Ball
Dan Zhang
UQCV
127
88
0
18 Jun 2020
The Clever Hans Effect in Anomaly Detection
The Clever Hans Effect in Anomaly Detection
Jacob R. Kauffmann
Lukas Ruff
G. Montavon
Klaus-Robert Muller
AAML
85
32
0
18 Jun 2020
Non-Negative Bregman Divergence Minimization for Deep Direct Density
  Ratio Estimation
Non-Negative Bregman Divergence Minimization for Deep Direct Density Ratio Estimation
Masahiro Kato
Takeshi Teshima
98
36
0
12 Jun 2020
Rethinking Assumptions in Deep Anomaly Detection
Rethinking Assumptions in Deep Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
129
91
0
30 May 2020
Modeling the Distribution of Normal Data in Pre-Trained Deep Features
  for Anomaly Detection
Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection
Oliver Rippel
Patrick Mertens
Dorit Merhof
175
241
0
28 May 2020
Interpreting Rate-Distortion of Variational Autoencoder and Using Model
  Uncertainty for Anomaly Detection
Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection
Seonho Park
George Adosoglou
P. Pardalos
DRLUQCV
105
17
0
05 May 2020
Meta-SVDD: Probabilistic Meta-Learning for One-Class Classification in
  Cancer Histology Images
Meta-SVDD: Probabilistic Meta-Learning for One-Class Classification in Cancer Histology Images
Jevgenij Gamper
Brandon Chan
Yee Wah Tsang
David R. J. Snead
Nasir M. Rajpoot
VLMOOD
40
6
0
06 Mar 2020
$\text{A}^3$: Activation Anomaly Analysis
A3\text{A}^3A3: Activation Anomaly Analysis
Philip Sperl
Jan-Philipp Schulze
Konstantin Böttinger
48
6
0
03 Mar 2020
Discriminative Multi-level Reconstruction under Compact Latent Space for
  One-Class Novelty Detection
Discriminative Multi-level Reconstruction under Compact Latent Space for One-Class Novelty Detection
Jaewoo Park
Yoon Gyo Jung
Andrew Beng Jin Teoh
44
4
0
03 Mar 2020
DROCC: Deep Robust One-Class Classification
DROCC: Deep Robust One-Class Classification
Sachin Goyal
Aditi Raghunathan
Moksh Jain
H. Simhadri
Prateek Jain
VLM
109
167
0
28 Feb 2020
Semi-supervised Anomaly Detection on Attributed Graphs
Semi-supervised Anomaly Detection on Attributed Graphs
Atsutoshi Kumagai
Tomoharu Iwata
Yasuhiro Fujiwara
58
39
0
27 Feb 2020
Simple and Effective Prevention of Mode Collapse in Deep One-Class
  Classification
Simple and Effective Prevention of Mode Collapse in Deep One-Class Classification
Penny Chong
Lukas Ruff
Marius Kloft
Alexander Binder
130
36
0
24 Jan 2020
NFAD: Fixing anomaly detection using normalizing flows
NFAD: Fixing anomaly detection using normalizing flows
Artem Sergeevich Ryzhikov
M. Borisyak
Andrey Ustyuzhanin
D. Derkach
57
12
0
19 Dec 2019
Novelty Detection Via Blurring
Novelty Detection Via Blurring
Sung-Ik Choi
Sae-Young Chung
UQCV
78
36
0
27 Nov 2019
Deep Variational Semi-Supervised Novelty Detection
Deep Variational Semi-Supervised Novelty Detection
Tal Daniel
Thanard Kurutach
Aviv Tamar
DRLUQCV
109
21
0
12 Nov 2019
Deep Weakly-supervised Anomaly Detection
Deep Weakly-supervised Anomaly Detection
Guansong Pang
Chunhua Shen
Huidong Jin
Anton van den Hengel
89
94
0
30 Oct 2019
Effectiveness of Tree-based Ensembles for Anomaly Discovery: Insights,
  Batch and Streaming Active Learning
Effectiveness of Tree-based Ensembles for Anomaly Discovery: Insights, Batch and Streaming Active Learning
S. Das
M. R. Islam
Nitthilan Kanappan Jayakodi
J. Doppa
106
19
0
23 Jan 2019
Previous
123456