Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.01563
Cited By
Hamiltonian Neural Networks
4 June 2019
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hamiltonian Neural Networks"
50 / 185 papers shown
Title
Modular Robot Control with Motor Primitives
Moses C. Nah
Johannes Lachner
Neville Hogan
19
0
0
15 May 2025
Geometric Fault-Tolerant Neural Network Tracking Control of Unknown Systems on Matrix Lie Groups
Robin Chhabra
Farzaneh Abdollahi
36
0
0
07 May 2025
Hamiltonian Normalizing Flows as kinetic PDE solvers: application to the 1D Vlasov-Poisson Equations
Vincent Souveton
Sébastien Terrana
41
0
0
07 May 2025
Learning and Transferring Physical Models through Derivatives
Alessandro Trenta
Andrea Cossu
Davide Bacciu
AI4CE
39
0
0
02 May 2025
Provably-Safe, Online System Identification
Bohao Zhang
Zichang Zhou
Ram Vasudevan
48
0
0
30 Apr 2025
Negative Imaginary Neural ODEs: Learning to Control Mechanical Systems with Stability Guarantees
Kanghong Shi
Ruigang Wang
I. Manchester
24
0
0
28 Apr 2025
New Recipe for Semi-supervised Community Detection: Clique Annealing under Crystallization Kinetics
Ling Cheng
Jiashu Pu
Ruicheng Liang
Qian Shao
Hezhe Qiao
Feida Zhu
31
0
0
22 Apr 2025
High-order expansion of Neural Ordinary Differential Equations flows
Dario Izzo
Sebastien Origer
Giacomo Acciarini
F. Biscani
AI4CE
29
0
0
02 Apr 2025
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
58
0
0
28 Jan 2025
Discrete Lagrangian Neural Networks with Automatic Symmetry Discovery
Yana Lishkova
P. Scherer
Steffen Ridderbusch
M. Jamnik
Pietro Lio
Sina Ober-Blobaum
Christian Offen
PINN
73
7
0
28 Jan 2025
AnyNav: Visual Neuro-Symbolic Friction Learning for Off-road Navigation
Taimeng Fu
Zitong Zhan
Zhipeng Zhao
Shaoshu Su
Xiao Lin
Ehsan Esfahani
Karthik Dantu
Souma Chowdhury
Chen Wang
90
1
0
22 Jan 2025
Optimal Virtual Model Control for Robotics: Design and Tuning of Passivity-Based Controllers
Daniel Larby
F. Forni
62
1
0
20 Jan 2025
Understanding and Mitigating Membership Inference Risks of Neural Ordinary Differential Equations
Sanghyun Hong
Fan Wu
A. Gruber
Kookjin Lee
42
0
0
12 Jan 2025
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
77
1
0
15 Dec 2024
Explicit and data-Efficient Encoding via Gradient Flow
Kyriakos Flouris
Anna Volokitin
G. Bredell
E. Konukoglu
AI4CE
74
0
0
01 Dec 2024
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
Katharina Friedl
Noémie Jaquier
Jens Lundell
Tamim Asfour
Danica Kragic
AI4CE
28
0
0
24 Oct 2024
Efficient, Accurate and Stable Gradients for Neural ODEs
Sam McCallum
James Foster
37
4
0
15 Oct 2024
Feedback Favors the Generalization of Neural ODEs
Jindou Jia
Zihan Yang
Meng Wang
Kexin Guo
Jianfei Yang
Xiang Yu
Lei Guo
OOD
AI4CE
43
2
0
14 Oct 2024
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
31
0
0
07 Oct 2024
SymmetryLens: A new candidate paradigm for unsupervised symmetry learning via locality and equivariance
Onur Efe
Arkadas Ozakin
31
0
0
07 Oct 2024
Scientific Machine Learning Seismology
Tomohisa Okazaki
PINN
AI4CE
53
0
0
27 Sep 2024
Analysis of the Identifying Regulation with Adversarial Surrogates Algorithm
Ron Teichner
Ron Meir
Michael Margaliot
25
0
0
05 May 2024
Implicit-Explicit simulation of Mass-Spring-Charge Systems
Zhiyuan Zhang
Zhaocheng Liu
Stefanos‐Aldo Papanicolopulos
Kartic Subr
Kartic Subr
PINN
37
0
0
05 Mar 2024
Closure Discovery for Coarse-Grained Partial Differential Equations Using Grid-based Reinforcement Learning
Jan-Philipp von Bassewitz
Sebastian Kaltenbach
Petros Koumoutsakos
AI4CE
38
2
0
01 Feb 2024
Bayesian identification of nonseparable Hamiltonians with multiplicative noise using deep learning and reduced-order modeling
Nicholas Galioto
Harsh Sharma
Boris Kramer
Alex Arkady Gorodetsky
44
0
0
23 Jan 2024
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control
T. Duong
Abdullah Altawaitan
Jason Stanley
Nikolay Atanasov
28
10
0
17 Jan 2024
Hybrid Modeling Design Patterns
Maja Rudolph
Stefan Kurz
Barbara Rakitsch
AI4CE
31
8
0
29 Dec 2023
A charge-preserving method for solving graph neural diffusion networks
Lidia Aceto
Pietro Antonio Grassi
32
0
0
16 Dec 2023
Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems
Marco Lepri
Davide Bacciu
Cosimo Della Santina
AI4CE
38
8
0
11 Dec 2023
A hybrid approach for solving the gravitational N-body problem with Artificial Neural Networks
V. S. Ulibarrena
Philipp Horn
S. P. Zwart
E. Sellentin
B. Koren
Maxwell X. Cai
PINN
22
2
0
31 Oct 2023
Adversarial Robustness in Graph Neural Networks: A Hamiltonian Approach
Kai Zhao
Qiyu Kang
Yang Song
Rui She
Sijie Wang
Wee Peng Tay
AAML
40
22
0
10 Oct 2023
Training neural mapping schemes for satellite altimetry with simulation data
Q. Febvre
Julien Le Sommer
C. Ubelmann
Ronan Fablet
11
9
0
19 Sep 2023
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
K. Ensinger
Sebastian Ziesche
Sebastian Trimpe
34
1
0
06 Sep 2023
Hamiltonian GAN
Christine Allen-Blanchette
GAN
AI4CE
40
1
0
22 Aug 2023
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
25
1
0
07 Aug 2023
Iterative Magnitude Pruning as a Renormalisation Group: A Study in The Context of The Lottery Ticket Hypothesis
Abu-Al Hassan
33
0
0
06 Aug 2023
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian Graph Neural Networks
S. Bishnoi
Ravinder Bhattoo
J. Jayadeva
Sayan Ranu
N. M. A. Krishnan
PINN
AI4CE
34
1
0
11 Jul 2023
Learning Latent Dynamics via Invariant Decomposition and (Spatio-)Temporal Transformers
Kai Lagemann
C. Lagemann
Swarnava Mukherjee
39
2
0
21 Jun 2023
Learning Dynamical Systems from Noisy Data with Inverse-Explicit Integrators
Haakon Noren
Sølve Eidnes
E. Celledoni
21
3
0
06 Jun 2023
Physics-Informed Computer Vision: A Review and Perspectives
C. Banerjee
Kien Nguyen
Clinton Fookes
G. Karniadakis
PINN
AI4CE
34
29
0
29 May 2023
Learning Switching Port-Hamiltonian Systems with Uncertainty Quantification
Thomas Beckers
Tom Z. Jiahao
George J. Pappas
31
2
0
15 May 2023
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior
Thomas Beckers
Jacob H. Seidman
P. Perdikaris
George J. Pappas
PINN
29
17
0
15 May 2023
Policy Gradient Methods in the Presence of Symmetries and State Abstractions
Prakash Panangaden
S. Rezaei-Shoshtari
Rosie Zhao
D. Meger
Doina Precup
25
2
0
09 May 2023
Physics-Informed Learning Using Hamiltonian Neural Networks with Output Error Noise Models
Sarvin Moradi
N. Jaensson
Roland Tóth
Maarten Schoukens
PINN
30
3
0
02 May 2023
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
26
10
0
27 Apr 2023
Constraining Chaos: Enforcing dynamical invariants in the training of recurrent neural networks
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
36
5
0
24 Apr 2023
Contingency Analyses with Warm Starter using Probabilistic Graphical Model
Shimiao Li
Amritanshu Pandey
L. Pileggi
AI4CE
34
2
0
10 Apr 2023
Learning Hamiltonian Systems with Mono-Implicit Runge-Kutta Methods
Haakon Noren
27
3
0
07 Mar 2023
MetaPhysiCa: OOD Robustness in Physics-informed Machine Learning
S Chandra Mouli
M. A. Alam
Bruno Ribeiro
OOD
29
4
0
06 Mar 2023
Node Embedding from Hamiltonian Information Propagation in Graph Neural Networks
Qiyu Kang
Kai Zhao
Yang Song
Sijie Wang
Rui She
Wee Peng Tay
38
0
0
02 Mar 2023
1
2
3
4
Next