Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.01563
Cited By
Hamiltonian Neural Networks
4 June 2019
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hamiltonian Neural Networks"
50 / 191 papers shown
Title
Neural Ordinary Differential Equations for Nonlinear System Identification
Aowabin Rahman
Ján Drgoňa
Aaron Tuor
J. Strube
25
22
0
28 Feb 2022
Learning the nonlinear dynamics of soft mechanical metamaterials with graph networks
Tianju Xue
S. Adriaenssens
S. Mao
AI4CE
9
26
0
24 Feb 2022
Reconstruction of observed mechanical motions with Artificial Intelligence tools
Antal Jakovác
M. T. Kurbucz
Péter Pósfay
9
8
0
23 Feb 2022
Learning continuous models for continuous physics
Aditi S. Krishnapriyan
A. Queiruga
N. Benjamin Erichson
Michael W. Mahoney
AI4CE
32
33
0
17 Feb 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
26
40
0
10 Feb 2022
Learning Hamiltonians of constrained mechanical systems
E. Celledoni
A. Leone
Davide Murari
B. Owren
AI4CE
44
17
0
31 Jan 2022
Symplectic Momentum Neural Networks -- Using Discrete Variational Mechanics as a prior in Deep Learning
Saul Santos
Monica Ekal
R. Ventura
32
5
0
20 Jan 2022
Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast Training and Evaluation of Neural ODEs
Franck Djeumou
Cyrus Neary
Eric Goubault
S. Putot
Ufuk Topcu
AI4TS
30
18
0
14 Jan 2022
SympOCnet: Solving optimal control problems with applications to high-dimensional multi-agent path planning problems
Tingwei Meng
Zhen Zhang
Jérome Darbon
George Karniadakis
29
15
0
14 Jan 2022
Constraint-based graph network simulator
Yulia Rubanova
Alvaro Sanchez-Gonzalez
Tobias Pfaff
Peter W. Battaglia
PINN
AI4CE
32
28
0
16 Dec 2021
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNN
AI4CE
21
53
0
06 Dec 2021
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
73
26
0
06 Dec 2021
Physically Consistent Neural Networks for building thermal modeling: theory and analysis
L. D. Natale
B. Svetozarevic
Philipp Heer
Colin N. Jones
PINN
AI4CE
57
84
0
06 Dec 2021
Hamiltonian latent operators for content and motion disentanglement in image sequences
Asif Khan
Amos Storkey
29
2
0
02 Dec 2021
Residual Pathway Priors for Soft Equivariance Constraints
Marc Finzi
Gregory W. Benton
A. Wilson
BDL
UQCV
24
51
0
02 Dec 2021
Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks
Tian Zheng
Weihao Gao
Chong-Jun Wang
AI4CE
42
3
0
30 Nov 2021
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
29
3
0
25 Nov 2021
Physics-enhanced Neural Networks in the Small Data Regime
Jonas Eichelsdörfer
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
PINN
16
5
0
19 Nov 2021
Climate Modeling with Neural Diffusion Equations
JeeHyun Hwang
Jeongwhan Choi
Hwan-Kyu Choi
Kookjin Lee
Dongeun Lee
Noseong Park
DiffM
29
22
0
11 Nov 2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
47
8
0
10 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
35
28
0
09 Nov 2021
On the Stochastic Stability of Deep Markov Models
Ján Drgoňa
Sayak Mukherjee
Jiaxin Zhang
Frank Liu
M. Halappanavar
BDL
25
5
0
08 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
33
93
0
02 Nov 2021
Scientific Machine Learning Benchmarks
Jeyan Thiyagalingam
Mallikarjun Shankar
Geoffrey C. Fox
Tony (Anthony) John Grenville Hey
18
110
0
25 Oct 2021
A Differentiable Newton-Euler Algorithm for Real-World Robotics
M. Lutter
Vallijah Subasri
Joe Watson
Frank Rudzicz
24
7
0
24 Oct 2021
One-Shot Transfer Learning of Physics-Informed Neural Networks
Shaan Desai
M. Mattheakis
H. Joy
P. Protopapas
Stephen J. Roberts
PINN
AI4CE
27
58
0
21 Oct 2021
Learning quantum dynamics with latent neural ODEs
M. Choi
Daniel Flam-Shepherd
T. Kyaw
A. Aspuru‐Guzik
BDL
AI4CE
32
5
0
20 Oct 2021
Kinematically consistent recurrent neural networks for learning inverse problems in wave propagation
Wrik Mallik
R. Jaiman
J. Jelovica
AI4CE
25
3
0
08 Oct 2021
Lagrangian Neural Network with Differentiable Symmetries and Relational Inductive Bias
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
AI4CE
55
4
0
07 Oct 2021
Continuous-Time Fitted Value Iteration for Robust Policies
M. Lutter
Boris Belousov
Shie Mannor
Dieter Fox
Animesh Garg
Jan Peters
10
9
0
05 Oct 2021
Combining Physics and Deep Learning to learn Continuous-Time Dynamics Models
M. Lutter
Jan Peters
PINN
AI4CE
33
39
0
05 Oct 2021
Locally-symplectic neural networks for learning volume-preserving dynamics
J. Bajārs
34
9
0
19 Sep 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
35
25
0
11 Sep 2021
Characterizing possible failure modes in physics-informed neural networks
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINN
AI4CE
51
614
0
02 Sep 2021
An Extensible Benchmark Suite for Learning to Simulate Physical Systems
Karl Otness
Arvi Gjoka
Joan Bruna
Daniele Panozzo
Benjamin Peherstorfer
T. Schneider
Denis Zorin
24
23
0
09 Aug 2021
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems
Shaan Desai
M. Mattheakis
David Sondak
P. Protopapas
Stephen J. Roberts
AI4CE
30
43
0
16 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
39
65
0
02 Jul 2021
Physics perception in sloshing scenes with guaranteed thermodynamic consistency
B. Moya
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
35
14
0
24 Jun 2021
Machine learning structure preserving brackets for forecasting irreversible processes
Kookjin Lee
Nathaniel Trask
P. Stinis
AI4CE
44
42
0
23 Jun 2021
Symplectic Learning for Hamiltonian Neural Networks
M. David
Florian Méhats
24
35
0
22 Jun 2021
Approximation capabilities of measure-preserving neural networks
Aiqing Zhu
Pengzhan Jin
Yifa Tang
29
8
0
21 Jun 2021
Stateful ODE-Nets using Basis Function Expansions
A. Queiruga
N. Benjamin Erichson
Liam Hodgkinson
Michael W. Mahoney
27
16
0
21 Jun 2021
Controlling Neural Networks with Rule Representations
Sungyong Seo
Sercan Ö. Arik
Jinsung Yoon
Xiang Zhang
Kihyuk Sohn
Tomas Pfister
OOD
AI4CE
32
35
0
14 Jun 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
Encoding Involutory Invariances in Neural Networks
Anwesh Bhattacharya
M. Mattheakis
P. Protopapas
33
1
0
07 Jun 2021
Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease Progression
Zhaozhi Qian
W. Zame
L. Fleuren
Paul Elbers
M. Schaar
OOD
22
53
0
05 Jun 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
79
185
0
19 Apr 2021
GEM: Group Enhanced Model for Learning Dynamical Control Systems
Philippe Hansen-Estruch
Wenling Shang
Lerrel Pinto
Pieter Abbeel
Stas Tiomkin
AI4CE
33
2
0
07 Apr 2021
Learning Deep Energy Shaping Policies for Stability-Guaranteed Manipulation
S. A. Khader
Hang Yin
Pietro Falco
Danica Kragic
16
12
0
30 Mar 2021
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
30
25
0
25 Feb 2021
Previous
1
2
3
4
Next