Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.01563
Cited By
Hamiltonian Neural Networks
4 June 2019
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hamiltonian Neural Networks"
41 / 191 papers shown
Title
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
30
54
0
25 Feb 2021
Learning Contact Dynamics using Physically Structured Neural Networks
Andreas Hochlehnert
Alexander Terenin
Steindór Sæmundsson
M. Deisenroth
19
16
0
22 Feb 2021
Meta-Learning Dynamics Forecasting Using Task Inference
Rui Wang
Robin Walters
Rose Yu
OOD
AI4TS
AI4CE
27
31
0
20 Feb 2021
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
Takashi Matsubara
Yuto Miyatake
Takaharu Yaguchi
23
23
0
19 Feb 2021
Extending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
52
34
0
12 Feb 2021
Physics-aware, probabilistic model order reduction with guaranteed stability
Sebastian Kaltenbach
P. Koutsourelakis
DiffM
AI4CE
13
15
0
14 Jan 2021
LieTransformer: Equivariant self-attention for Lie Groups
M. Hutchinson
Charline Le Lan
Sheheryar Zaidi
Emilien Dupont
Yee Whye Teh
Hyunjik Kim
26
111
0
20 Dec 2020
Neural Dynamic Policies for End-to-End Sensorimotor Learning
Shikhar Bahl
Mustafa Mukadam
Abhinav Gupta
Deepak Pathak
24
83
0
04 Dec 2020
Dissipative Deep Neural Dynamical Systems
Ján Drgoňa
Soumya Vasisht
Aaron Tuor
D. Vrabie
21
7
0
26 Nov 2020
Physics-constrained Deep Learning of Multi-zone Building Thermal Dynamics
Ján Drgoňa
Aaron Tuor
V. Chandan
D. Vrabie
AI4CE
27
115
0
11 Nov 2020
Sim2Sim Evaluation of a Novel Data-Efficient Differentiable Physics Engine for Tensegrity Robots
Kun Wang
Mridul Aanjaneya
Kostas Bekris
19
15
0
10 Nov 2020
Differentiable Physics Models for Real-world Offline Model-based Reinforcement Learning
M. Lutter
Johannes Silberbauer
Joe Watson
Jan Peters
OffRL
29
33
0
03 Nov 2020
Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints
Marc Finzi
Ke Alexander Wang
A. Wilson
AI4CE
34
126
0
26 Oct 2020
LagNetViP: A Lagrangian Neural Network for Video Prediction
Christine Allen-Blanchette
Sushant Veer
Anirudha Majumdar
Naomi Ehrich Leonard
44
30
0
24 Oct 2020
Data-driven Identification of 2D Partial Differential Equations using extracted physical features
Kazem Meidani
A. Farimani
21
17
0
20 Oct 2020
A Differentiable Newton Euler Algorithm for Multi-body Model Learning
M. Lutter
Johannes Silberbauer
Joe Watson
Jan Peters
8
11
0
19 Oct 2020
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Yuan Yin
Vincent Le Guen
Jérémie Donà
Emmanuel de Bézenac
Ibrahim Ayed
Nicolas Thome
Patrick Gallinari
AI4CE
PINN
33
132
0
09 Oct 2020
Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies
T. Konstantin Rusch
Siddhartha Mishra
21
89
0
02 Oct 2020
Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-equilibrium Flows
Juntao Huang
Zhiting Ma
Y. Zhou
W. Yong
AI4CE
43
16
0
28 Sep 2020
TorchDyn: A Neural Differential Equations Library
Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
AI4CE
22
24
0
20 Sep 2020
PIGNet: A physics-informed deep learning model toward generalized drug-target interaction predictions
Seokhyun Moon
Wonho Zhung
Soojung Yang
Jaechang Lim
W. Kim
15
97
0
22 Aug 2020
A Differential Game Theoretic Neural Optimizer for Training Residual Networks
Guan-Horng Liu
T. Chen
Evangelos A. Theodorou
24
2
0
17 Jul 2020
Deep Learning in Protein Structural Modeling and Design
Wenhao Gao
S. Mahajan
Jeremias Sulam
Jeffrey J. Gray
29
159
0
16 Jul 2020
Learning Physical Constraints with Neural Projections
Shuqi Yang
Xingzhe He
Bo Zhu
3DV
AI4CE
41
25
0
23 Jun 2020
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
30
107
0
22 Jun 2020
Physics-aware Spatiotemporal Modules with Auxiliary Tasks for Meta-Learning
Sungyong Seo
Chuizheng Meng
Sirisha Rambhatla
Yan Liu
AI4CE
18
11
0
15 Jun 2020
On Second Order Behaviour in Augmented Neural ODEs
Alexander Norcliffe
Cristian Bodnar
Ben Day
Nikola Simidjievski
Pietro Lió
36
90
0
12 Jun 2020
A First Principles Approach for Data-Efficient System Identification of Spring-Rod Systems via Differentiable Physics Engines
Kun Wang
Mridul Aanjaneya
Kostas Bekris
PINN
10
21
0
28 Apr 2020
Stable Neural Flows
Stefano Massaroli
Michael Poli
Michelangelo Bin
Jinkyoo Park
Atsushi Yamashita
Hajime Asama
46
31
0
18 Mar 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
139
424
0
10 Mar 2020
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi
Samuel Stanton
Pavel Izmailov
A. Wilson
28
316
0
25 Feb 2020
Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
34
78
0
20 Feb 2020
Linearly Constrained Neural Networks
J. Hendriks
Carl Jidling
A. Wills
Thomas B. Schon
21
34
0
05 Feb 2020
Machine learning and serving of discrete field theories -- when artificial intelligence meets the discrete universe
H. Qin
32
30
0
22 Oct 2019
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
21
216
0
30 Sep 2019
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
152
220
0
29 Sep 2019
Hamiltonian Graph Networks with ODE Integrators
Alvaro Sanchez-Gonzalez
V. Bapst
Kyle Cranmer
Peter W. Battaglia
AI4CE
25
176
0
27 Sep 2019
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
54
268
0
26 Sep 2019
Learning Symmetries of Classical Integrable Systems
Roberto Bondesan
A. Lamacraft
22
39
0
11 Jun 2019
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
280
1,401
0
01 Dec 2016
Previous
1
2
3
4