ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.11481
  4. Cited By
AI Feynman: a Physics-Inspired Method for Symbolic Regression
v1v2 (latest)

AI Feynman: a Physics-Inspired Method for Symbolic Regression

27 May 2019
S. Udrescu
Max Tegmark
ArXiv (abs)PDFHTML

Papers citing "AI Feynman: a Physics-Inspired Method for Symbolic Regression"

44 / 344 papers shown
Title
Encoding physics to learn reaction-diffusion processes
Encoding physics to learn reaction-diffusion processes
Chengping Rao
Pu Ren
Qi Wang
O. Buyukozturk
Haoqin Sun
Yang Liu
PINNAI4CEDiffM
105
97
0
09 Jun 2021
Uncovering Closed-form Governing Equations of Nonlinear Dynamics from
  Videos
Uncovering Closed-form Governing Equations of Nonlinear Dynamics from Videos
Lele Luan
Yang Liu
Hao Sun
PINNAI4CE
43
0
0
09 Jun 2021
Physical Constraint Embedded Neural Networks for inference and noise
  regulation
Physical Constraint Embedded Neural Networks for inference and noise regulation
Gregory Barber
Mulugeta Haile
Tzikang Chen
PINN
32
1
0
19 May 2021
Automated Biodesign Engineering by Abductive Meta-Interpretive Learning
Automated Biodesign Engineering by Abductive Meta-Interpretive Learning
Wang-Zhou Dai
Liam Hallett
Stephen Muggleton
Geoff S. Baldwin
AI4CE
11
0
0
17 May 2021
Informed Equation Learning
Informed Equation Learning
M. Werner
Andrej Junginger
Philipp Hennig
Georg Martius
56
14
0
13 May 2021
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural
  Networks
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
121
39
0
03 May 2021
Data-driven discovery of Green's functions with human-understandable
  deep learning
Data-driven discovery of Green's functions with human-understandable deep learning
Nicolas Boullé
Christopher Earls
Alex Townsend
PINNAI4CE
60
60
0
01 May 2021
Distilling Wikipedia mathematical knowledge into neural network models
Distilling Wikipedia mathematical knowledge into neural network models
J. Kim
Mikel Landajuela
Brenden K. Petersen
69
9
0
13 Apr 2021
An Approach to Symbolic Regression Using Feyn
An Approach to Symbolic Regression Using Feyn
Kevin René Brolos
Meera Machado
C. Cave
Jaan Kasak
Valdemar Stentoft-Hansen
Victor Galindo Batanero
T. Jelen
Casper Wilstrup
44
45
0
12 Apr 2021
Shape-constrained Symbolic Regression -- Improving Extrapolation with
  Prior Knowledge
Shape-constrained Symbolic Regression -- Improving Extrapolation with Prior Knowledge
G. Kronberger
F. O. França
Bogdan Burlacu
C. Haider
M. Kommenda
71
48
0
29 Mar 2021
Symbolic regression outperforms other models for small data sets
Symbolic regression outperforms other models for small data sets
Casper Wilstrup
Jaan Kasak
49
28
0
28 Mar 2021
Similarity-Based Equational Inference in Physics
Similarity-Based Equational Inference in Physics
Jordan Meadows
André Freitas
43
5
0
24 Mar 2021
Toward Building Science Discovery Machines
Toward Building Science Discovery Machines
A. Khalili
A. Bouchachia
AI4CE
25
1
0
24 Mar 2021
Symmetry meets AI
Symmetry meets AI
G. Barenboim
J. Hirn
V. Sanz
65
22
0
10 Mar 2021
Identifying Physical Law of Hamiltonian Systems via Meta-Learning
Identifying Physical Law of Hamiltonian Systems via Meta-Learning
Seungjun Lee
Haesang Yang
W. Seong
61
13
0
23 Feb 2021
Data-driven formulation of natural laws by recursive-LASSO-based
  symbolic regression
Data-driven formulation of natural laws by recursive-LASSO-based symbolic regression
Yuma Iwasaki
M. Ishida
18
3
0
18 Feb 2021
Learning Symbolic Expressions: Mixed-Integer Formulations, Cuts, and
  Heuristics
Learning Symbolic Expressions: Mixed-Integer Formulations, Cuts, and Heuristics
Jongeun Kim
S. Leyffer
Prasanna Balaprakash
40
3
0
16 Feb 2021
A Primer for Neural Arithmetic Logic Modules
A Primer for Neural Arithmetic Logic Modules
Bhumika Mistry
K. Farrahi
Jonathon S. Hare
33
8
0
23 Jan 2021
Machine-Learning Mathematical Structures
Machine-Learning Mathematical Structures
Yang-Hui He
70
41
0
15 Jan 2021
Learning Symbolic Expressions via Gumbel-Max Equation Learner Networks
Learning Symbolic Expressions via Gumbel-Max Equation Learner Networks
Gang Chen
40
9
0
12 Dec 2020
Disentangling a Deep Learned Volume Formula
Disentangling a Deep Learned Volume Formula
J. Craven
Vishnu Jejjala
Arjun Kar
74
19
0
07 Dec 2020
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
90
121
0
03 Dec 2020
Probabilistic Grammars for Equation Discovery
Probabilistic Grammars for Equation Discovery
Jure Brence
L. Todorovski
Jannis Brugger
48
34
0
01 Dec 2020
Conjecturing-Based Discovery of Patterns in Data
Conjecturing-Based Discovery of Patterns in Data
J. Brooks
David J. Edwards
Craig E. Larson
N. Van Cleemput
14
1
0
23 Nov 2020
Symbolically Solving Partial Differential Equations using Deep Learning
Symbolically Solving Partial Differential Equations using Deep Learning
Maysum Panju
Kourosh Parand
A. Ghodsi
70
4
0
12 Nov 2020
A Neuro-Symbolic Method for Solving Differential and Functional
  Equations
A Neuro-Symbolic Method for Solving Differential and Functional Equations
Maysum Panju
A. Ghodsi
32
2
0
04 Nov 2020
Forecasting Hamiltonian dynamics without canonical coordinates
Forecasting Hamiltonian dynamics without canonical coordinates
A. Choudhary
J. Lindner
Elliott G. Holliday
Scott T. Miller
S. Sinha
W. Ditto
65
26
0
28 Oct 2020
Logic Guided Genetic Algorithms
Logic Guided Genetic Algorithms
D. Ashok
Joseph Scott
S. J. Wetzel
Maysum Panju
Vijay Ganesh
108
12
0
21 Oct 2020
Maximum Reward Formulation In Reinforcement Learning
Maximum Reward Formulation In Reinforcement Learning
S. Gottipati
Yashaswi Pathak
Rohan Nuttall
Sahir
Raviteja Chunduru
Ahmed Touati
Sriram Ganapathi Subramanian
Matthew E. Taylor
Sarath Chandar
113
14
0
08 Oct 2020
OccamNet: A Fast Neural Model for Symbolic Regression at Scale
OccamNet: A Fast Neural Model for Symbolic Regression at Scale
Owen Dugan
Rumen Dangovski
Allan dos Santos Costa
Samuel Kim
Pawan Goyal
J. Jacobson
M. Soljavcić
95
11
0
16 Jul 2020
The Computational Limits of Deep Learning
The Computational Limits of Deep Learning
Neil C. Thompson
Kristjan Greenewald
Keeheon Lee
Gabriel F. Manso
VLM
91
531
0
10 Jul 2020
Convolutional-network models to predict wall-bounded turbulence from
  wall quantities
Convolutional-network models to predict wall-bounded turbulence from wall quantities
L. Guastoni
A. Güemes
A. Ianiro
S. Discetti
P. Schlatter
Hossein Azizpour
R. Vinuesa
60
168
0
22 Jun 2020
Discovering Symbolic Models from Deep Learning with Inductive Biases
Discovering Symbolic Models from Deep Learning with Inductive Biases
M. Cranmer
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Rui Xu
Kyle Cranmer
D. Spergel
S. Ho
AI4CE
96
483
0
19 Jun 2020
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph
  modularity
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
S. Udrescu
A. Tan
Jiahai Feng
Orisvaldo Neto
Tailin Wu
Max Tegmark
120
193
0
18 Jun 2020
Symbolic Regression using Mixed-Integer Nonlinear Optimization
Symbolic Regression using Mixed-Integer Nonlinear Optimization
V. Austel
Cristina Cornelio
S. Dash
Joao Goncalves
L. Horesh
Tyler R. Josephson
N. Megiddo
51
5
0
11 Jun 2020
Sparse Symplectically Integrated Neural Networks
Sparse Symplectically Integrated Neural Networks
Daniel M. DiPietro
S. Xiong
Bo Zhu
88
31
0
10 Jun 2020
Symbolic Pregression: Discovering Physical Laws from Distorted Video
Symbolic Pregression: Discovering Physical Laws from Distorted Video
S. Udrescu
Max Tegmark
96
41
0
19 May 2020
Boosting on the shoulders of giants in quantum device calibration
Boosting on the shoulders of giants in quantum device calibration
A. Wozniakowski
Jayne Thompson
M. Gu
F. Binder
38
3
0
13 May 2020
Recurrent neural networks and Koopman-based frameworks for temporal
  predictions in a low-order model of turbulence
Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence
Hamidreza Eivazi
L. Guastoni
P. Schlatter
Hossein Azizpour
Ricardo Vinuesa
AI4CE
60
7
0
01 May 2020
Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming
  Featuring Feynman Equations
Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming Featuring Feynman Equations
Marko Durasevic
D. Jakobović
M. Martins
S. Picek
Markus Wagner
24
10
0
27 Apr 2020
Integrating Scientific Knowledge with Machine Learning for Engineering
  and Environmental Systems
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
156
414
0
10 Mar 2020
Discovering Symmetry Invariants and Conserved Quantities by Interpreting
  Siamese Neural Networks
Discovering Symmetry Invariants and Conserved Quantities by Interpreting Siamese Neural Networks
S. J. Wetzel
R. Melko
Joseph Scott
Maysum Panju
Vijay Ganesh
73
70
0
09 Mar 2020
Deep symbolic regression: Recovering mathematical expressions from data
  via risk-seeking policy gradients
Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients
Brenden K. Petersen
Mikel Landajuela
T. Nathan Mundhenk
Claudio Santiago
Soo K. Kim
Joanne T. Kim
68
320
0
10 Dec 2019
Symbolic Regression Methods for Reinforcement Learning
Symbolic Regression Methods for Reinforcement Learning
Jiří Kubalík
Erik Derner
J. Žegklitz
Robert Babuška
OffRL
47
24
0
22 Mar 2019
Previous
1234567