Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.11481
Cited By
v1
v2 (latest)
AI Feynman: a Physics-Inspired Method for Symbolic Regression
27 May 2019
S. Udrescu
Max Tegmark
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"AI Feynman: a Physics-Inspired Method for Symbolic Regression"
44 / 344 papers shown
Title
Encoding physics to learn reaction-diffusion processes
Chengping Rao
Pu Ren
Qi Wang
O. Buyukozturk
Haoqin Sun
Yang Liu
PINN
AI4CE
DiffM
105
97
0
09 Jun 2021
Uncovering Closed-form Governing Equations of Nonlinear Dynamics from Videos
Lele Luan
Yang Liu
Hao Sun
PINN
AI4CE
43
0
0
09 Jun 2021
Physical Constraint Embedded Neural Networks for inference and noise regulation
Gregory Barber
Mulugeta Haile
Tzikang Chen
PINN
32
1
0
19 May 2021
Automated Biodesign Engineering by Abductive Meta-Interpretive Learning
Wang-Zhou Dai
Liam Hallett
Stephen Muggleton
Geoff S. Baldwin
AI4CE
11
0
0
17 May 2021
Informed Equation Learning
M. Werner
Andrej Junginger
Philipp Hennig
Georg Martius
56
14
0
13 May 2021
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
121
39
0
03 May 2021
Data-driven discovery of Green's functions with human-understandable deep learning
Nicolas Boullé
Christopher Earls
Alex Townsend
PINN
AI4CE
60
60
0
01 May 2021
Distilling Wikipedia mathematical knowledge into neural network models
J. Kim
Mikel Landajuela
Brenden K. Petersen
69
9
0
13 Apr 2021
An Approach to Symbolic Regression Using Feyn
Kevin René Brolos
Meera Machado
C. Cave
Jaan Kasak
Valdemar Stentoft-Hansen
Victor Galindo Batanero
T. Jelen
Casper Wilstrup
44
45
0
12 Apr 2021
Shape-constrained Symbolic Regression -- Improving Extrapolation with Prior Knowledge
G. Kronberger
F. O. França
Bogdan Burlacu
C. Haider
M. Kommenda
71
48
0
29 Mar 2021
Symbolic regression outperforms other models for small data sets
Casper Wilstrup
Jaan Kasak
49
28
0
28 Mar 2021
Similarity-Based Equational Inference in Physics
Jordan Meadows
André Freitas
43
5
0
24 Mar 2021
Toward Building Science Discovery Machines
A. Khalili
A. Bouchachia
AI4CE
25
1
0
24 Mar 2021
Symmetry meets AI
G. Barenboim
J. Hirn
V. Sanz
65
22
0
10 Mar 2021
Identifying Physical Law of Hamiltonian Systems via Meta-Learning
Seungjun Lee
Haesang Yang
W. Seong
61
13
0
23 Feb 2021
Data-driven formulation of natural laws by recursive-LASSO-based symbolic regression
Yuma Iwasaki
M. Ishida
18
3
0
18 Feb 2021
Learning Symbolic Expressions: Mixed-Integer Formulations, Cuts, and Heuristics
Jongeun Kim
S. Leyffer
Prasanna Balaprakash
40
3
0
16 Feb 2021
A Primer for Neural Arithmetic Logic Modules
Bhumika Mistry
K. Farrahi
Jonathon S. Hare
33
8
0
23 Jan 2021
Machine-Learning Mathematical Structures
Yang-Hui He
70
41
0
15 Jan 2021
Learning Symbolic Expressions via Gumbel-Max Equation Learner Networks
Gang Chen
40
9
0
12 Dec 2020
Disentangling a Deep Learned Volume Formula
J. Craven
Vishnu Jejjala
Arjun Kar
74
19
0
07 Dec 2020
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
90
121
0
03 Dec 2020
Probabilistic Grammars for Equation Discovery
Jure Brence
L. Todorovski
Jannis Brugger
48
34
0
01 Dec 2020
Conjecturing-Based Discovery of Patterns in Data
J. Brooks
David J. Edwards
Craig E. Larson
N. Van Cleemput
14
1
0
23 Nov 2020
Symbolically Solving Partial Differential Equations using Deep Learning
Maysum Panju
Kourosh Parand
A. Ghodsi
70
4
0
12 Nov 2020
A Neuro-Symbolic Method for Solving Differential and Functional Equations
Maysum Panju
A. Ghodsi
32
2
0
04 Nov 2020
Forecasting Hamiltonian dynamics without canonical coordinates
A. Choudhary
J. Lindner
Elliott G. Holliday
Scott T. Miller
S. Sinha
W. Ditto
65
26
0
28 Oct 2020
Logic Guided Genetic Algorithms
D. Ashok
Joseph Scott
S. J. Wetzel
Maysum Panju
Vijay Ganesh
108
12
0
21 Oct 2020
Maximum Reward Formulation In Reinforcement Learning
S. Gottipati
Yashaswi Pathak
Rohan Nuttall
Sahir
Raviteja Chunduru
Ahmed Touati
Sriram Ganapathi Subramanian
Matthew E. Taylor
Sarath Chandar
113
14
0
08 Oct 2020
OccamNet: A Fast Neural Model for Symbolic Regression at Scale
Owen Dugan
Rumen Dangovski
Allan dos Santos Costa
Samuel Kim
Pawan Goyal
J. Jacobson
M. Soljavcić
95
11
0
16 Jul 2020
The Computational Limits of Deep Learning
Neil C. Thompson
Kristjan Greenewald
Keeheon Lee
Gabriel F. Manso
VLM
91
531
0
10 Jul 2020
Convolutional-network models to predict wall-bounded turbulence from wall quantities
L. Guastoni
A. Güemes
A. Ianiro
S. Discetti
P. Schlatter
Hossein Azizpour
R. Vinuesa
60
168
0
22 Jun 2020
Discovering Symbolic Models from Deep Learning with Inductive Biases
M. Cranmer
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Rui Xu
Kyle Cranmer
D. Spergel
S. Ho
AI4CE
96
483
0
19 Jun 2020
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
S. Udrescu
A. Tan
Jiahai Feng
Orisvaldo Neto
Tailin Wu
Max Tegmark
120
193
0
18 Jun 2020
Symbolic Regression using Mixed-Integer Nonlinear Optimization
V. Austel
Cristina Cornelio
S. Dash
Joao Goncalves
L. Horesh
Tyler R. Josephson
N. Megiddo
51
5
0
11 Jun 2020
Sparse Symplectically Integrated Neural Networks
Daniel M. DiPietro
S. Xiong
Bo Zhu
88
31
0
10 Jun 2020
Symbolic Pregression: Discovering Physical Laws from Distorted Video
S. Udrescu
Max Tegmark
96
41
0
19 May 2020
Boosting on the shoulders of giants in quantum device calibration
A. Wozniakowski
Jayne Thompson
M. Gu
F. Binder
38
3
0
13 May 2020
Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence
Hamidreza Eivazi
L. Guastoni
P. Schlatter
Hossein Azizpour
Ricardo Vinuesa
AI4CE
60
7
0
01 May 2020
Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming Featuring Feynman Equations
Marko Durasevic
D. Jakobović
M. Martins
S. Picek
Markus Wagner
24
10
0
27 Apr 2020
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
156
414
0
10 Mar 2020
Discovering Symmetry Invariants and Conserved Quantities by Interpreting Siamese Neural Networks
S. J. Wetzel
R. Melko
Joseph Scott
Maysum Panju
Vijay Ganesh
73
70
0
09 Mar 2020
Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients
Brenden K. Petersen
Mikel Landajuela
T. Nathan Mundhenk
Claudio Santiago
Soo K. Kim
Joanne T. Kim
68
320
0
10 Dec 2019
Symbolic Regression Methods for Reinforcement Learning
Jiří Kubalík
Erik Derner
J. Žegklitz
Robert Babuška
OffRL
47
24
0
22 Mar 2019
Previous
1
2
3
4
5
6
7