ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.11481
  4. Cited By
AI Feynman: a Physics-Inspired Method for Symbolic Regression
v1v2 (latest)

AI Feynman: a Physics-Inspired Method for Symbolic Regression

27 May 2019
S. Udrescu
Max Tegmark
ArXiv (abs)PDFHTML

Papers citing "AI Feynman: a Physics-Inspired Method for Symbolic Regression"

50 / 344 papers shown
Title
Reconstructing $S$-matrix Phases with Machine Learning
Reconstructing SSS-matrix Phases with Machine Learning
Aurélien Dersy
M. Schwartz
A. Zhiboedov
48
5
0
18 Aug 2023
Discovering Local Binary Pattern Equation for Foreground Object Removal
  in Videos
Discovering Local Binary Pattern Equation for Foreground Object Removal in Videos
Caroline Silva
A. Sobral
A. Vacavant
T. Bouwmans
José A. M. Felippe De Souza
29
0
0
11 Aug 2023
Predicting and explaining nonlinear material response using deep
  Physically Guided Neural Networks with Internal Variables
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
51
1
0
07 Aug 2023
Exploring how a Generative AI interprets music
Exploring how a Generative AI interprets music
G. Barenboim
L. Debbio
J. Hirn
V. Sanz
MGen
58
4
0
31 Jul 2023
Active Learning in Genetic Programming: Guiding Efficient Data
  Collection for Symbolic Regression
Active Learning in Genetic Programming: Guiding Efficient Data Collection for Symbolic Regression
N. Haut
W. Banzhaf
B. Punch
51
2
0
31 Jul 2023
TMPNN: High-Order Polynomial Regression Based on Taylor Map
  Factorization
TMPNN: High-Order Polynomial Regression Based on Taylor Map Factorization
Andrei Ivanov
Stefan Maria Ailuro
35
1
0
30 Jul 2023
Discovering interpretable elastoplasticity models via the neural
  polynomial method enabled symbolic regressions
Discovering interpretable elastoplasticity models via the neural polynomial method enabled symbolic regressions
B. Bahmani
H. S. Suh
WaiChing Sun
57
17
0
24 Jul 2023
Discovering a reaction-diffusion model for Alzheimer's disease by
  combining PINNs with symbolic regression
Discovering a reaction-diffusion model for Alzheimer's disease by combining PINNs with symbolic regression
Zhen Zhang
Zongren Zou
E. Kuhl
George Karniadakis
68
43
0
16 Jul 2023
Multi-Dimensional Ability Diagnosis for Machine Learning Algorithms
Multi-Dimensional Ability Diagnosis for Machine Learning Algorithms
Qi Liu
Zhengze Gong
Zhenya Huang
Chuanren Liu
Hengshu Zhu
Zhi Li
Enhong Chen
Hui Xiong
54
1
0
14 Jul 2023
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian
  Graph Neural Networks
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian Graph Neural Networks
S. Bishnoi
Ravinder Bhattoo
J. Jayadeva
Sayan Ranu
N. M. A. Krishnan
PINNAI4CE
70
2
0
11 Jul 2023
Probabilistic Regular Tree Priors for Scientific Symbolic Reasoning
Probabilistic Regular Tree Priors for Scientific Symbolic Reasoning
Tim Schneider
A. Totounferoush
Wolfgang Nowak
Steffen Staab
68
0
0
14 Jun 2023
Learning Closed-form Equations for Subgrid-scale Closures from
  High-fidelity Data: Promises and Challenges
Learning Closed-form Equations for Subgrid-scale Closures from High-fidelity Data: Promises and Challenges
Karan Jakhar
Yifei Guan
R. Mojgani
Ashesh Chattopadhyay
Pedram Hassanzadeh
AI4ClAI4CE
75
16
0
08 Jun 2023
MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY
  Estimation
MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY Estimation
Tony Tohme
Mohsen Sadr
K. Youcef-Toumi
N. Hadjiconstantinou
78
3
0
07 Jun 2023
Using generative AI to investigate medical imagery models and datasets
Using generative AI to investigate medical imagery models and datasets
Oran Lang
Doron Stupp
I. Traynis
Heather Cole-Lewis
Chloe R. Bennett
...
Avinatan Hassidim
Yossi Matias
Yun-Hui Liu
N. Hammel
Boris Babenko
MedIm
119
25
0
01 Jun 2023
Information Fusion via Symbolic Regression: A Tutorial in the Context of
  Human Health
Information Fusion via Symbolic Regression: A Tutorial in the Context of Human Health
J. J. Schnur
Nitesh Chawla
60
5
0
31 May 2023
Symbolic Regression via Control Variable Genetic Programming
Symbolic Regression via Control Variable Genetic Programming
Nan Jiang
Yexiang Xue
61
10
0
25 May 2023
RSRM: Reinforcement Symbolic Regression Machine
RSRM: Reinforcement Symbolic Regression Machine
Yilong Xu
Yang Liu
Haoqin Sun
50
4
0
24 May 2023
Interpretation of Time-Series Deep Models: A Survey
Interpretation of Time-Series Deep Models: A Survey
Ziqi Zhao
Yucheng Shi
Shushan Wu
Fan Yang
Wenzhan Song
Ninghao Liu
AI4TS
95
7
0
23 May 2023
Discovering Causal Relations and Equations from Data
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINNAI4ClAI4CECML
108
77
0
21 May 2023
A Framework Based on Symbolic Regression Coupled with eXtended
  Physics-Informed Neural Networks for Gray-Box Learning of Equations of Motion
  from Data
A Framework Based on Symbolic Regression Coupled with eXtended Physics-Informed Neural Networks for Gray-Box Learning of Equations of Motion from Data
Elham Kiyani
K. Shukla
George Karniadakis
M. Karttunen
73
22
0
18 May 2023
Active Learning in Symbolic Regression with Physical Constraints
Active Learning in Symbolic Regression with Physical Constraints
Jorge Medina
Andrew D. White
75
3
0
17 May 2023
S-REINFORCE: A Neuro-Symbolic Policy Gradient Approach for Interpretable
  Reinforcement Learning
S-REINFORCE: A Neuro-Symbolic Policy Gradient Approach for Interpretable Reinforcement Learning
R. Dutta
Qinchen Wang
Ankur Singh
Dhruv Kumarjiguda
Xiaoli Li
Senthilnath Jayavelu
36
2
0
12 May 2023
Pseudo-Hamiltonian system identification
Pseudo-Hamiltonian system identification
Sigurd Holmsen
Sølve Eidnes
S. Riemer-Sørensen
109
4
0
09 May 2023
Explaining dark matter halo density profiles with neural networks
Explaining dark matter halo density profiles with neural networks
Luisa Lucie-Smith
H. Peiris
A. Pontzen
82
5
0
04 May 2023
Seeing is Believing: Brain-Inspired Modular Training for Mechanistic
  Interpretability
Seeing is Believing: Brain-Inspired Modular Training for Mechanistic Interpretability
Ziming Liu
Eric Gan
Max Tegmark
77
40
0
04 May 2023
Automated Scientific Discovery: From Equation Discovery to Autonomous Discovery Systems
Automated Scientific Discovery: From Equation Discovery to Autonomous Discovery Systems
Stefan Kramer
Mattia Cerrato
Jannis Brugger
Sašo Džeroski
Ross King
90
12
0
03 May 2023
Interpretable Machine Learning for Science with PySR and
  SymbolicRegression.jl
Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl
M. Cranmer
108
42
0
02 May 2023
Expand-and-Cluster: Parameter Recovery of Neural Networks
Expand-and-Cluster: Parameter Recovery of Neural Networks
Flavio Martinelli
Berfin Simsek
W. Gerstner
Johanni Brea
146
8
0
25 Apr 2023
Automatically identifying ordinary differential equations from data
Automatically identifying ordinary differential equations from data
Kevin Egan
Weizhen Li
Rui Carvalho
35
2
0
21 Apr 2023
Controllable Neural Symbolic Regression
Controllable Neural Symbolic Regression
Tommaso Bendinelli
Luca Biggio
Pierre-Alexandre Kamienny
75
15
0
20 Apr 2023
Differentiable Genetic Programming for High-dimensional Symbolic
  Regression
Differentiable Genetic Programming for High-dimensional Symbolic Regression
Peng Zeng
Xiaotian Song
Andrew Lensen
Yuwei Ou
Yanan Sun
Mengjie Zhang
Jiancheng Lv
77
3
0
18 Apr 2023
The R-mAtrIx Net
The R-mAtrIx Net
Shailesh Lal
Suvajit Majumder
E. Sobko
36
5
0
14 Apr 2023
Priors for symbolic regression
Priors for symbolic regression
Deaglan J. Bartlett
Harry Desmond
Pedro G. Ferreira
72
6
0
13 Apr 2023
Machine learning for discovering laws of nature
Machine learning for discovering laws of nature
Lizhi Xin
Kevin Xin
H. Xin
AI4CE
48
0
0
18 Mar 2023
Symbolic Regression for PDEs using Pruned Differentiable Programs
Symbolic Regression for PDEs using Pruned Differentiable Programs
Ritam Majumdar
Vishal Sudam Jadhav
A. Deodhar
Shirish S. Karande
Lovekesh Vig
Venkataramana Runkana
PINNAI4CE
21
5
0
13 Mar 2023
Transformer-based Planning for Symbolic Regression
Transformer-based Planning for Symbolic Regression
Parshin Shojaee
Kazem Meidani
A. Farimani
Chandan K. Reddy
109
46
0
13 Mar 2023
Deep symbolic regression for physics guided by units constraints: toward
  the automated discovery of physical laws
Deep symbolic regression for physics guided by units constraints: toward the automated discovery of physical laws
Wassim Tenachi
Rodrigo Ibata
F. Diakogiannis
AI4CE
76
83
0
06 Mar 2023
Language Model Crossover: Variation through Few-Shot Prompting
Language Model Crossover: Variation through Few-Shot Prompting
Elliot Meyerson
M. Nelson
Herbie Bradley
Adam Gaier
Arash Moradi
Amy K. Hoover
Joel Lehman
VLM
139
92
0
23 Feb 2023
Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search
Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search
Pierre-Alexandre Kamienny
Guillaume Lample
Sylvain Lamprier
M. Virgolin
109
32
0
22 Feb 2023
Online Symbolic Regression with Informative Query
Online Symbolic Regression with Informative Query
Pengwei Jin
Di Huang
Rui Zhang
Xingui Hu
Ziyuan Nan
Zidong Du
Qi Guo
Yunji Chen
45
2
0
21 Feb 2023
Efficient Generator of Mathematical Expressions for Symbolic Regression
Efficient Generator of Mathematical Expressions for Symbolic Regression
Sebastian Mežnar
Jannis Brugger
L. Todorovski
75
13
0
20 Feb 2023
ConCerNet: A Contrastive Learning Based Framework for Automated
  Conservation Law Discovery and Trustworthy Dynamical System Prediction
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction
Wang Zhang
Tsui-Wei Weng
Subhro Das
Alexandre Megretski
Lucani E. Daniel
Lam M. Nguyen
PINN
101
3
0
11 Feb 2023
Symbolic Metamodels for Interpreting Black-boxes Using Primitive
  Functions
Symbolic Metamodels for Interpreting Black-boxes Using Primitive Functions
Mahed Abroshan
Saumitra Mishra
Mohammad Mahdi Khalili
72
4
0
09 Feb 2023
Using Intermediate Forward Iterates for Intermediate Generator
  Optimization
Using Intermediate Forward Iterates for Intermediate Generator Optimization
Harshit Mishra
Jurijs Nazarovs
Manmohan Dogra
Sathya Ravi
DiffM
46
0
0
05 Feb 2023
Benchmarking sparse system identification with low-dimensional chaos
Benchmarking sparse system identification with low-dimensional chaos
A. Kaptanoglu
Lanyue Zhang
Zachary G. Nicolaou
Urban Fasel
Steven L. Brunton
101
24
0
04 Feb 2023
Oracle-Preserving Latent Flows
Oracle-Preserving Latent Flows
Alexander Roman
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
DRL
129
5
0
02 Feb 2023
Toward Physically Plausible Data-Driven Models: A Novel Neural Network
  Approach to Symbolic Regression
Toward Physically Plausible Data-Driven Models: A Novel Neural Network Approach to Symbolic Regression
Jiří Kubalík
Erik Derner
Robert Babuška
69
12
0
01 Feb 2023
Incorporating Background Knowledge in Symbolic Regression using a
  Computer Algebra System
Incorporating Background Knowledge in Symbolic Regression using a Computer Algebra System
Charles Fox
Neil Tran
Nikki Nacion
Samiha Sharlin
Tyler R. Josephson
120
3
0
27 Jan 2023
Hamiltonian Neural Networks with Automatic Symmetry Detection
Hamiltonian Neural Networks with Automatic Symmetry Detection
Eva Dierkes
Christian Offen
Sina Ober-Blobaum
K. Flaßkamp
96
9
0
19 Jan 2023
Symbolic expression generation via Variational Auto-Encoder
Symbolic expression generation via Variational Auto-Encoder
Sergei Popov
Mikhail Lazarev
V. Belavin
D. Derkach
Andrey Ustyuzhanin
DRL
71
5
0
15 Jan 2023
Previous
1234567
Next