Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.11481
Cited By
AI Feynman: a Physics-Inspired Method for Symbolic Regression
27 May 2019
S. Udrescu
Max Tegmark
Re-assign community
ArXiv
PDF
HTML
Papers citing
"AI Feynman: a Physics-Inspired Method for Symbolic Regression"
26 / 126 papers shown
Title
From Kepler to Newton: Explainable AI for Science
Zelong Li
Jianchao Ji
Yongfeng Zhang
26
19
0
24 Nov 2021
Symbolic Regression via Neural-Guided Genetic Programming Population Seeding
T. Nathan Mundhenk
Mikel Landajuela
Ruben Glatt
Claudio Santiago
Daniel Faissol
Brenden K. Petersen
38
85
0
29 Oct 2021
Chaos as an interpretable benchmark for forecasting and data-driven modelling
W. Gilpin
AI4TS
27
76
0
11 Oct 2021
Learning Division with Neural Arithmetic Logic Modules
Bhumika Mistry
K. Farrahi
Jonathon S. Hare
25
0
0
11 Oct 2021
Kinematically consistent recurrent neural networks for learning inverse problems in wave propagation
Wrik Mallik
R. Jaiman
J. Jelovica
AI4CE
25
3
0
08 Oct 2021
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning
Ziming Liu
Yunyue Chen
Yuanqi Du
Max Tegmark
PINN
AI4CE
40
22
0
28 Sep 2021
Understanding Spending Behavior: Recurrent Neural Network Explanation and Interpretation
Charl Maree
C. Omlin
AI4TS
24
5
0
24 Sep 2021
Machine-learning hidden symmetries
Ziming Liu
Max Tegmark
48
52
0
20 Sep 2021
KO codes: Inventing Nonlinear Encoding and Decoding for Reliable Wireless Communication via Deep-learning
Ashok Vardhan Makkuva
Xiyang Liu
Mohammad Vahid Jamali
Hessam Mahdavifar
Sewoong Oh
Pramod Viswanath
24
34
0
29 Aug 2021
DySMHO: Data-Driven Discovery of Governing Equations for Dynamical Systems via Moving Horizon Optimization
F. Lejarza
M. Baldea
AI4CE
27
38
0
30 Jul 2021
Contemporary Symbolic Regression Methods and their Relative Performance
William La Cava
Patryk Orzechowski
Bogdan Burlacu
Fabrício Olivetti de Francca
M. Virgolin
Ying Jin
M. Kommenda
J. Moore
56
251
0
29 Jul 2021
Machine learning of Kondo physics using variational autoencoders and symbolic regression
Cole Miles
Matthew R. Carbone
Erica J. Sturm
D. Lu
A. Weichselbaum
K. Barros
R. Konik
8
8
0
16 Jul 2021
Generative and reproducible benchmarks for comprehensive evaluation of machine learning classifiers
Patryk Orzechowski
J. Moore
ELM
VLM
17
13
0
14 Jul 2021
SymbolicGPT: A Generative Transformer Model for Symbolic Regression
Mojtaba Valipour
Bowen You
Maysum Panju
A. Ghodsi
18
88
0
27 Jun 2021
Neural Symbolic Regression that Scales
Luca Biggio
Tommaso Bendinelli
Alexander Neitz
Aurelien Lucchi
Giambattista Parascandolo
54
170
0
11 Jun 2021
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
25
39
0
03 May 2021
Symmetry meets AI
G. Barenboim
J. Hirn
V. Sanz
25
21
0
10 Mar 2021
Disentangling a Deep Learned Volume Formula
J. Craven
Vishnu Jejjala
Arjun Kar
13
19
0
07 Dec 2020
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
28
119
0
03 Dec 2020
Symbolically Solving Partial Differential Equations using Deep Learning
Maysum Panju
Kourosh Parand
A. Ghodsi
8
3
0
12 Nov 2020
Logic Guided Genetic Algorithms
D. Ashok
Joseph Scott
S. J. Wetzel
Maysum Panju
Vijay Ganesh
21
12
0
21 Oct 2020
Convolutional-network models to predict wall-bounded turbulence from wall quantities
L. Guastoni
A. Güemes
A. Ianiro
S. Discetti
P. Schlatter
Hossein Azizpour
R. Vinuesa
28
167
0
22 Jun 2020
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
S. Udrescu
A. Tan
Jiahai Feng
Orisvaldo Neto
Tailin Wu
Max Tegmark
11
183
0
18 Jun 2020
Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence
Hamidreza Eivazi
L. Guastoni
P. Schlatter
Hossein Azizpour
Ricardo Vinuesa
AI4CE
18
7
0
01 May 2020
Discovering Symmetry Invariants and Conserved Quantities by Interpreting Siamese Neural Networks
S. J. Wetzel
R. Melko
Joseph Scott
Maysum Panju
Vijay Ganesh
17
64
0
09 Mar 2020
A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay
L. Smith
208
1,020
0
26 Mar 2018
Previous
1
2
3