Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.11481
Cited By
v1
v2 (latest)
AI Feynman: a Physics-Inspired Method for Symbolic Regression
27 May 2019
S. Udrescu
Max Tegmark
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"AI Feynman: a Physics-Inspired Method for Symbolic Regression"
50 / 344 papers shown
Title
General Automatic Solution Generation of Social Problems
Tong Niu
Haoyu Huang
Yu Du
Weihao Zhang
Luping Shi
Rong Zhao
42
0
0
25 Jan 2024
Empowering Machines to Think Like Chemists: Unveiling Molecular Structure-Polarity Relationships with Hierarchical Symbolic Regression
Siyu Lou
Chengchun Liu
Yuntian Chen
Fanyang Mo
10
1
0
25 Jan 2024
Symbolic Equation Solving via Reinforcement Learning
Lennart Dabelow
Masahito Ueda
82
2
0
24 Jan 2024
Discovering Mathematical Formulas from Data via GPT-guided Monte Carlo Tree Search
Yanjie Li
Weijun Li
Lina Yu
Min Wu
Jingyi Liu
Wenqiang Li
Meilan Hao
Shu Wei
Yusong Deng
91
9
0
24 Jan 2024
Exploring the Truth and Beauty of Theory Landscapes with Machine Learning
Konstantin T. Matchev
Katia Matcheva
Pierre Ramond
Sarunas Verner
76
2
0
21 Jan 2024
SymbolNet: Neural Symbolic Regression with Adaptive Dynamic Pruning for Compression
Ho Fung Tsoi
Vladimir Loncar
S. Dasu
Philip C. Harris
235
4
0
18 Jan 2024
Bootstrapping OTS-Funcimg Pre-training Model (Botfip) -- A Comprehensive Symbolic Regression Framework
Tianhao Chen
Pengbo Xu
Haibiao Zheng
AI4CE
83
4
0
18 Jan 2024
Learning effective good variables from physical data
Giulio Barletta
G. Trezza
E. Chiavazzo
58
3
0
10 Jan 2024
Closed-Form Interpretation of Neural Network Classifiers with Symbolic Regression Gradients
S. J. Wetzel
105
3
0
10 Jan 2024
Deep Generative Symbolic Regression
Samuel Holt
Zhaozhi Qian
M. Schaar
66
31
0
30 Dec 2023
A Mathematical Guide to Operator Learning
Nicolas Boullé
Alex Townsend
93
47
0
22 Dec 2023
AI-Lorenz: A physics-data-driven framework for black-box and gray-box identification of chaotic systems with symbolic regression
Mario De Florio
Ioannis G. Kevrekidis
George Karniadakis
96
17
0
21 Dec 2023
Celestial Machine Learning: Discovering the Planarity, Heliocentricity, and Orbital Equation of Mars with AI Feynman
Zi-Yu Khoo
Gokul Rajiv
Abel Yang
Jonathan Sze Choong Low
Stéphane Bressan
61
0
0
19 Dec 2023
Vertical Symbolic Regression
Nan Jiang
Md Nasim
Yexiang Xue
67
1
0
19 Dec 2023
Position Paper on Materials Design -- A Modern Approach
Willi Großmann
Sebastian Eilermann
Tim Rensmeyer
Artur Liebert
Michael Hohmann
Christian Wittke
Oliver Niggemann
64
2
0
18 Dec 2023
GINN-LP: A Growing Interpretable Neural Network for Discovering Multivariate Laurent Polynomial Equations
Nisal Ranasinghe
Damith A. Senanayake
Sachith Seneviratne
Malin Premaratne
Saman K. Halgamuge
129
4
0
18 Dec 2023
A Comparative Evaluation of Additive Separability Tests for Physics-Informed Machine Learning
Zi-Yu Khoo
Jonathan Sze Choong Low
Stéphane Bressan
ELM
52
0
0
15 Dec 2023
Celestial Machine Learning: From Data to Mars and Beyond with AI Feynman
Zi-Yu Khoo
A. Yang
Jonathan Sze Choong Low
S. Bressan
87
2
0
15 Dec 2023
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions
Esteban Real
Yao Chen
Mirko Rossini
Connal de Souza
Manav Garg
Akhil Verghese
Moritz Firsching
Quoc V. Le
E. D. Cubuk
David H. Park
68
1
0
13 Dec 2023
A Transformer Model for Symbolic Regression towards Scientific Discovery
Florian Lalande
Yoshitomo Matsubara
Naoya Chiba
Tatsunori Taniai
Ryo Igarashi
Yoshitala Ushiku
49
3
0
07 Dec 2023
Physical Symbolic Optimization
Wassim Tenachi
Rodrigo Ibata
F. Diakogiannis
72
0
0
06 Dec 2023
Class Symbolic Regression: Gotta Fit Ém All
Wassim Tenachi
Rodrigo Ibata
Thibaut L. François
F. Diakogiannis
87
5
0
04 Dec 2023
Symbolic Learning for Material Discovery
Daniel Cunnington
F. Cipcigan
Rodrigo Neumann Barros Ferreira
Jonathan Booth
39
1
0
30 Nov 2023
Improved identification accuracy in equation learning via comprehensive
R
2
\boldsymbol{R^2}
R
2
-elimination and Bayesian model selection
Daniel Nickelsen
B. Bah
118
0
0
22 Nov 2023
Deep learning complete intersection Calabi-Yau manifolds
Harold Erbin
Riccardo Finotello
50
5
0
20 Nov 2023
MetaSymNet: A Dynamic Symbolic Regression Network Capable of Evolving into Arbitrary Formulations
Yanjie Li
Weijun Li
Lina Yu
Min Wu
Jinyi Liu
Wenqiang Li
Meilan Hao
Shu Wei
Yusong Deng
84
4
0
13 Nov 2023
Symbolic Regression as Feature Engineering Method for Machine and Deep Learning Regression Tasks
Assaf Shmuel
Oren Glickman
Teddy Lazebnik
90
10
0
10 Nov 2023
Efficient Symbolic Policy Learning with Differentiable Symbolic Expression
Jiaming Guo
Rui Zhang
Shaohui Peng
Qi Yi
Xingui Hu
...
Zidong Du
Xishan Zhang
Ling Li
Qi Guo
Yunji Chen
OffRL
68
7
0
02 Nov 2023
Seeking Truth and Beauty in Flavor Physics with Machine Learning
Konstantin T. Matchev
Katia Matcheva
Pierre Ramond
Sarunas Verner
AI4CE
52
2
0
31 Oct 2023
Optimal Inflationary Potentials
Tomás Sousa
Deaglan J. Bartlett
Harry Desmond
Pedro G. Ferreira
78
4
0
25 Oct 2023
Learning Continuous Network Emerging Dynamics from Scarce Observations via Data-Adaptive Stochastic Processes
Jiaxu Cui
Bing Sun
Jiming Liu
Bo Yang
51
1
0
25 Oct 2023
Machine learning in physics: a short guide
F. A. Rodrigues
PINN
AI4CE
52
7
0
16 Oct 2023
A Mass-Conserving-Perceptron for Machine Learning-Based Modeling of Geoscientific Systems
Yuan-Heng Wang
Hoshin V. Gupta
AI4CE
94
6
0
12 Oct 2023
Discovering Interpretable Physical Models using Symbolic Regression and Discrete Exterior Calculus
Simone Manti
Alessandro Lucantonio
AI4CE
65
4
0
10 Oct 2023
ODEFormer: Symbolic Regression of Dynamical Systems with Transformers
Stéphane d’Ascoli
Soren Becker
Alexander Mathis
Philippe Schwaller
Niki Kilbertus
105
25
0
09 Oct 2023
ParFam -- (Neural Guided) Symbolic Regression Based on Continuous Global Optimization
Philipp Scholl
Katharina Bieker
Hillary Hauger
Gitta Kutyniok
112
5
0
09 Oct 2023
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology
Qingsong Xu
Yilei Shi
Jonathan Bamber
Ye Tuo
Ralf Ludwig
Xiao Xiang Zhu
AI4CE
141
10
0
08 Oct 2023
Extreme sparsification of physics-augmented neural networks for interpretable model discovery in mechanics
J. Fuhg
Reese E. Jones
N. Bouklas
AI4CE
86
26
0
05 Oct 2023
SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training
Kazem Meidani
Parshin Shojaee
Chandan K. Reddy
A. Farimani
126
19
0
03 Oct 2023
AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box Identification
Nazanin Ahmadi Daryakenari
Mario De Florio
K. Shukla
George Karniadakis
99
34
0
29 Sep 2023
Deep Learning in Deterministic Computational Mechanics
L. Herrmann
Stefan Kollmannsberger
AI4CE
PINN
118
0
0
27 Sep 2023
A Neural-Guided Dynamic Symbolic Network for Exploring Mathematical Expressions from Data
Wenqiang Li
Weijun Li
Lina Yu
Min Wu
Linjun Sun
Jingyi Liu
Yanjie Li
Shu Wei
Yusong Deng
Meilan Hao
74
6
0
24 Sep 2023
Latent assimilation with implicit neural representations for unknown dynamics
Zhuoyuan Li
Bin Dong
Pingwen Zhang
AI4CE
82
4
0
18 Sep 2023
Racing Control Variable Genetic Programming for Symbolic Regression
Nan Jiang
Yexiang Xue
60
2
0
13 Sep 2023
Weak-PDE-LEARN: A Weak Form Based Approach to Discovering PDEs From Noisy, Limited Data
R. Stephany
Christopher Earls
59
4
0
09 Sep 2023
Inferring physical laws by artificial intelligence based causal models
Jorawar Singh
Kishor Bharti
Arvind
CML
AI4CE
53
0
0
08 Sep 2023
Separable Hamiltonian Neural Networks
Zi-Yu Khoo
Dawen Wu
Jonathan Sze Choong Low
Stéphane Bressan
72
1
0
03 Sep 2023
Human Comprehensible Active Learning of Genome-Scale Metabolic Networks
L. Ai
Shishun Liang
Wang-Zhou Dai
Liam Hallett
Stephen Muggleton
Geoff S. Baldwin
AI4CE
19
1
0
24 Aug 2023
Adaptive Uncertainty-Guided Model Selection for Data-Driven PDE Discovery
Pongpisit Thanasutives
Takashi Morita
M. Numao
Ken-ichi Fukui
85
2
0
20 Aug 2023
Evolving Scientific Discovery by Unifying Data and Background Knowledge with AI Hilbert
Ryan Cory-Wright
Cristina Cornelio
S. Dash
Bachir El Khadir
L. Horesh
73
10
0
18 Aug 2023
Previous
1
2
3
4
5
6
7
Next