ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.11481
  4. Cited By
AI Feynman: a Physics-Inspired Method for Symbolic Regression

AI Feynman: a Physics-Inspired Method for Symbolic Regression

27 May 2019
S. Udrescu
Max Tegmark
ArXivPDFHTML

Papers citing "AI Feynman: a Physics-Inspired Method for Symbolic Regression"

50 / 126 papers shown
Title
Controllable Neural Symbolic Regression
Controllable Neural Symbolic Regression
Tommaso Bendinelli
Luca Biggio
Pierre-Alexandre Kamienny
36
14
0
20 Apr 2023
Differentiable Genetic Programming for High-dimensional Symbolic
  Regression
Differentiable Genetic Programming for High-dimensional Symbolic Regression
Peng Zeng
Xiaotian Song
Andrew Lensen
Yuwei Ou
Yanan Sun
Mengjie Zhang
Jiancheng Lv
37
2
0
18 Apr 2023
The R-mAtrIx Net
The R-mAtrIx Net
Shailesh Lal
Suvajit Majumder
E. Sobko
24
5
0
14 Apr 2023
Priors for symbolic regression
Priors for symbolic regression
Deaglan J. Bartlett
Harry Desmond
Pedro G. Ferreira
42
5
0
13 Apr 2023
Deep symbolic regression for physics guided by units constraints: toward
  the automated discovery of physical laws
Deep symbolic regression for physics guided by units constraints: toward the automated discovery of physical laws
Wassim Tenachi
Rodrigo Ibata
F. Diakogiannis
AI4CE
13
71
0
06 Mar 2023
Language Model Crossover: Variation through Few-Shot Prompting
Language Model Crossover: Variation through Few-Shot Prompting
Elliot Meyerson
M. Nelson
Herbie Bradley
Adam Gaier
Arash Moradi
Amy K. Hoover
Joel Lehman
VLM
45
79
0
23 Feb 2023
Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search
Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search
Pierre-Alexandre Kamienny
Guillaume Lample
Sylvain Lamprier
M. Virgolin
34
25
0
22 Feb 2023
Using Intermediate Forward Iterates for Intermediate Generator
  Optimization
Using Intermediate Forward Iterates for Intermediate Generator Optimization
Harshit Mishra
Jurijs Nazarovs
Manmohan Dogra
Sathya Ravi
DiffM
27
0
0
05 Feb 2023
Oracle-Preserving Latent Flows
Oracle-Preserving Latent Flows
Alexander Roman
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
DRL
37
5
0
02 Feb 2023
Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
  from First Principles
Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras from First Principles
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Alexander Roman
Eyup B. Unlu
Sarunas Verner
AI4CE
36
22
0
13 Jan 2023
Stretched and measured neural predictions of complex network dynamics
Stretched and measured neural predictions of complex network dynamics
V. Vasiliauskaite
Nino Antulov-Fantulin
33
1
0
12 Jan 2023
Differentiable modeling to unify machine learning and physical models
  and advance Geosciences
Differentiable modeling to unify machine learning and physical models and advance Geosciences
Chaopeng Shen
A. Appling
Pierre Gentine
Toshiyuki Bandai
H. Gupta
...
Chris Rackauckas
Tirthankar Roy
Chonggang Xu
Binayak Mohanty
K. Lawson
AI4CE
42
14
0
10 Jan 2023
Symbolic Visual Reinforcement Learning: A Scalable Framework with
  Object-Level Abstraction and Differentiable Expression Search
Symbolic Visual Reinforcement Learning: A Scalable Framework with Object-Level Abstraction and Differentiable Expression Search
Wenqing Zheng
S. Sharan
Zhiwen Fan
Kevin Wang
Yihan Xi
Zhangyang Wang
58
9
0
30 Dec 2022
Learning State Transition Rules from Hidden Layers of Restricted
  Boltzmann Machines
Learning State Transition Rules from Hidden Layers of Restricted Boltzmann Machines
Koji Watanabe
Katsumi Inoue
AI4CE
35
1
0
07 Dec 2022
Applications of AI in Astronomy
Applications of AI in Astronomy
S. Djorgovski
Ashish Mahabal
Matthew Graham
K. Polsterer
A. Krone-Martins
21
2
0
03 Dec 2022
Interpretability and accessibility of machine learning in selected food
  processing, agriculture and health applications
Interpretability and accessibility of machine learning in selected food processing, agriculture and health applications
N. Ranasinghe
A. Ramanan
S. Fernando
P. N. Hameed
D. Herath
T. Malepathirana
P. Suganthan
M. Niranjan
Saman K. Halgamuge
13
2
0
30 Nov 2022
Interpretable Scientific Discovery with Symbolic Regression: A Review
Interpretable Scientific Discovery with Symbolic Regression: A Review
N. Makke
Sanjay Chawla
38
94
0
20 Nov 2022
Is the Machine Smarter than the Theorist: Deriving Formulas for Particle
  Kinematics with Symbolic Regression
Is the Machine Smarter than the Theorist: Deriving Formulas for Particle Kinematics with Symbolic Regression
Zhongtian Dong
K. Kong
Konstantin T. Matchev
Katia Matcheva
46
13
0
15 Nov 2022
Discovering ordinary differential equations that govern time-series
Discovering ordinary differential equations that govern time-series
Soren Becker
M. Klein
Alexander Neitz
Giambattista Parascandolo
Niki Kilbertus
AI4TS
27
4
0
05 Nov 2022
Precision Machine Learning
Precision Machine Learning
Eric J. Michaud
Ziming Liu
Max Tegmark
24
34
0
24 Oct 2022
Quantifying Complexity: An Object-Relations Approach to Complex Systems
Quantifying Complexity: An Object-Relations Approach to Complex Systems
S. Casey
22
1
0
22 Oct 2022
Machine Learning Class Numbers of Real Quadratic Fields
Machine Learning Class Numbers of Real Quadratic Fields
Malik Amir
Yang-Hui He
Kyu-Hwan Lee
Thomas Oliver
E. Sultanow
13
1
0
19 Sep 2022
Data-driven, multi-moment fluid modeling of Landau damping
Data-driven, multi-moment fluid modeling of Landau damping
Wenjie Cheng
H. Fu
Liang Wang
C. Dong
Yaqiu Jin
M. Jiang
Jiayu Ma
Yilan Qin
Kexin Liu
PINN
AI4CE
30
12
0
10 Sep 2022
Feynman on Artificial Intelligence and Machine Learning, with Updates
Feynman on Artificial Intelligence and Machine Learning, with Updates
E. Mjolsness
AI4CE
16
0
0
31 Aug 2022
Neural network facilitated ab initio derivation of linear formula: A
  case study on formulating the relationship between DNA motifs and gene
  expression
Neural network facilitated ab initio derivation of linear formula: A case study on formulating the relationship between DNA motifs and gene expression
Chengyu Liu
Wei Wang
17
0
0
19 Aug 2022
What can we Learn by Predicting Accuracy?
What can we Learn by Predicting Accuracy?
Olivier Risser-Maroix
Benjamin Chamand
27
4
0
02 Aug 2022
Physics Informed Symbolic Networks
Physics Informed Symbolic Networks
Ritam Majumdar
Vishal Sudam Jadhav
A. Deodhar
Shirish S. Karande
L. Vig
Venkataramana Runkana
PINN
26
0
0
11 Jul 2022
Sequential Manipulation Planning on Scene Graph
Sequential Manipulation Planning on Scene Graph
Ziyuan Jiao
Yida Niu
Zeyu Zhang
Song-Chun Zhu
Yixin Zhu
Hangxin Liu
32
23
0
10 Jul 2022
Understanding Physical Effects for Effective Tool-use
Understanding Physical Effects for Effective Tool-use
Zeyu Zhang
Ziyuan Jiao
Weiqi Wang
Yixin Zhu
Song-Chun Zhu
Hangxin Liu
35
12
0
30 Jun 2022
D-CIPHER: Discovery of Closed-form Partial Differential Equations
D-CIPHER: Discovery of Closed-form Partial Differential Equations
Krzysztof Kacprzyk
Zhaozhi Qian
M. Schaar
AI4CE
30
1
0
21 Jun 2022
SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics
  with Machine Learning
SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics with Machine Learning
Abdulhakim Alnuqaydan
S. Gleyzer
Harrison B. Prosper
28
14
0
17 Jun 2022
CoNSoLe: Convex Neural Symbolic Learning
CoNSoLe: Convex Neural Symbolic Learning
Haoran Li
Yang Weng
Hanghang Tong
27
9
0
01 Jun 2022
Correlation versus RMSE Loss Functions in Symbolic Regression Tasks
Correlation versus RMSE Loss Functions in Symbolic Regression Tasks
N. Haut
W. Banzhaf
B. Punch
14
5
0
31 May 2022
Physical Activation Functions (PAFs): An Approach for More Efficient
  Induction of Physics into Physics-Informed Neural Networks (PINNs)
Physical Activation Functions (PAFs): An Approach for More Efficient Induction of Physics into Physics-Informed Neural Networks (PINNs)
J. Abbasi
Paal Ostebo Andersen
PINN
AI4CE
25
14
0
29 May 2022
Taylor Genetic Programming for Symbolic Regression
Taylor Genetic Programming for Symbolic Regression
Baihe He
Qiang Lu
Qingyun Yang
Jake Luo
Zhiguang Wang
37
29
0
28 Apr 2022
Learning Green's functions associated with time-dependent partial
  differential equations
Learning Green's functions associated with time-dependent partial differential equations
N. Boullé
Seick Kim
Tianyi Shi
Alex Townsend
AI4CE
29
25
0
27 Apr 2022
End-to-end symbolic regression with transformers
End-to-end symbolic regression with transformers
Pierre-Alexandre Kamienny
Stéphane dÁscoli
Guillaume Lample
Franccois Charton
33
166
0
22 Apr 2022
Fundamental limits to learning closed-form mathematical models from data
Fundamental limits to learning closed-form mathematical models from data
Oscar Fajardo-Fontiveros
I. Reichardt
Harry R. De Los Ríos
Jordi Duch
M. Sales-Pardo
R. Guimerà
30
19
0
06 Apr 2022
On scientific understanding with artificial intelligence
On scientific understanding with artificial intelligence
Mario Krenn
R. Pollice
S. Guo
Matteo Aldeghi
Alba Cervera-Lierta
...
Florian Hase
A. Jinich
AkshatKumar Nigam
Zhenpeng Yao
Alán Aspuru-Guzik
35
186
0
04 Apr 2022
Dimensionless machine learning: Imposing exact units equivariance
Dimensionless machine learning: Imposing exact units equivariance
Soledad Villar
Weichi Yao
D. Hogg
Ben Blum-Smith
Bianca Dumitrascu
23
26
0
02 Apr 2022
Explainable Artificial Intelligence for Exhaust Gas Temperature of
  Turbofan Engines
Explainable Artificial Intelligence for Exhaust Gas Temperature of Turbofan Engines
M. Kefalas
Juan de Santiago Rojo
A. Apostolidis
D. V. D. Herik
Bas van Stein
T.H.W. Bäck
9
2
0
24 Mar 2022
AI Poincaré 2.0: Machine Learning Conservation Laws from
  Differential Equations
AI Poincaré 2.0: Machine Learning Conservation Laws from Differential Equations
Ziming Liu
Varun Madhavan
M. Tegmark
PINN
38
27
0
23 Mar 2022
Neural-Network-Directed Genetic Programmer for Discovery of Governing
  Equations
Neural-Network-Directed Genetic Programmer for Discovery of Governing Equations
S. Razavi
E. Gamazon
16
5
0
15 Mar 2022
Machine Learning and Cosmology
Machine Learning and Cosmology
C. Dvorkin
S. Mishra-Sharma
Brian D. Nord
V. A. Villar
Camille Avestruz
...
A. Ćiprijanović
Andrew J. Connolly
L. Garrison
G. Narayan
F. Villaescusa-Navarro
AI4CE
29
12
0
15 Mar 2022
Evolving symbolic density functionals
Evolving symbolic density functionals
He Ma
Arunachalam Narayanaswamy
Patrick F. Riley
Li Li
26
31
0
03 Mar 2022
Evolvability Degeneration in Multi-Objective Genetic Programming for
  Symbolic Regression
Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression
Dazhuang Liu
M. Virgolin
Tanja Alderliesten
Peter A. N. Bosman
44
12
0
14 Feb 2022
Active Learning Improves Performance on Symbolic RegressionTasks in
  StackGP
Active Learning Improves Performance on Symbolic RegressionTasks in StackGP
N. Haut
W. Banzhaf
B. Punch
32
12
0
09 Feb 2022
MeltpoolNet: Melt pool Characteristic Prediction in Metal Additive
  Manufacturing Using Machine Learning
MeltpoolNet: Melt pool Characteristic Prediction in Metal Additive Manufacturing Using Machine Learning
Parand Akbari
Francis Ogoke
Ning-Yu Kao
Kazem Meidani
Chun-Yu Yeh
William Lee
A. Farimani
AI4CE
23
86
0
26 Jan 2022
Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional
  Analysis and Symbolic Regression
Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional Analysis and Symbolic Regression
Konstantin T. Matchev
Katia Matcheva
Alexander Roman
21
30
0
22 Dec 2021
Noether Networks: Meta-Learning Useful Conserved Quantities
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
75
26
0
06 Dec 2021
Previous
123
Next