ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.11487
14
1

Symbolic Learning for Material Discovery

30 November 2023
Daniel Cunnington
F. Cipcigan
Rodrigo Neumann Barros Ferreira
Jonathan Booth
ArXivPDFHTML
Abstract

Discovering new materials is essential to solve challenges in climate change, sustainability and healthcare. A typical task in materials discovery is to search for a material in a database which maximises the value of a function. That function is often expensive to evaluate, and can rely upon a simulation or an experiment. Here, we introduce SyMDis, a sample efficient optimisation method based on symbolic learning, that discovers near-optimal materials in a large database. SyMDis performs comparably to a state-of-the-art optimiser, whilst learning interpretable rules to aid physical and chemical verification. Furthermore, the rules learned by SyMDis generalise to unseen datasets and return high performing candidates in a zero-shot evaluation, which is difficult to achieve with other approaches.

View on arXiv
Comments on this paper