Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.03704
Cited By
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
9 March 2019
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport"
25 / 75 papers shown
Title
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
478
0
08 Mar 2021
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
P. Jaini
Didrik Nielsen
Max Welling
BDL
35
10
0
04 Feb 2021
Orbital MCMC
Kirill Neklyudov
Max Welling
15
7
0
15 Oct 2020
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting
Adam D. Cobb
Brian Jalaian
BDL
14
73
0
14 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
25
14
0
07 Oct 2020
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models
Zhisheng Xiao
Karsten Kreis
Jan Kautz
Arash Vahdat
11
123
0
01 Oct 2020
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
39
47
0
24 Aug 2020
Involutive MCMC: a Unifying Framework
Kirill Neklyudov
Max Welling
Evgenii Egorov
Dmitry Vetrov
8
36
0
30 Jun 2020
Telescoping Density-Ratio Estimation
Benjamin Rhodes
Kai Xu
Michael U. Gutmann
17
94
0
22 Jun 2020
MCMC Should Mix: Learning Energy-Based Model with Neural Transport Latent Space MCMC
Erik Nijkamp
Ruiqi Gao
Pavel Sountsov
Srinivas Vasudevan
Bo Pang
Song-Chun Zhu
Ying Nian Wu
BDL
8
20
0
12 Jun 2020
Bayesian Neural Networks
Tom Charnock
Laurence Perreault Levasseur
F. Lanusse
UQCV
BDL
13
3
0
02 Jun 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
115
54
0
23 Mar 2020
Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling
Tong Che
Ruixiang Zhang
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Liam Paull
Yuan Cao
Yoshua Bengio
DiffM
DRL
12
111
0
12 Mar 2020
MetFlow: A New Efficient Method for Bridging the Gap between Markov Chain Monte Carlo and Variational Inference
Achille Thin
Nikita Kotelevskii
Jean-Stanislas Denain
Léo Grinsztajn
Alain Durmus
Maxim Panov
Eric Moulines
BDL
6
17
0
27 Feb 2020
Composing Normalizing Flows for Inverse Problems
Jay Whang
Erik M. Lindgren
A. Dimakis
TPM
26
49
0
26 Feb 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
39
176
0
16 Feb 2020
tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern Hardware
Junpeng Lao
Christopher Suter
I. Langmore
C. Chimisov
A. Saxena
Pavel Sountsov
Dave Moore
Rif A. Saurous
Matthew D. Hoffman
Joshua V. Dillon
9
30
0
04 Feb 2020
i-flow: High-dimensional Integration and Sampling with Normalizing Flows
Christina Gao
J. Isaacson
Claudius Krause
AI4CE
11
105
0
15 Jan 2020
Hamiltonian Monte Carlo Swindles
Dan Piponi
Matthew D. Hoffman
Pavel Sountsov
8
9
0
14 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
31
1,623
0
05 Dec 2019
Variationally Inferred Sampling Through a Refined Bound for Probabilistic Programs
Víctor Gallego
D. Insua
BDL
8
1
0
26 Aug 2019
Learning Symmetries of Classical Integrable Systems
Roberto Bondesan
A. Lamacraft
14
39
0
11 Jun 2019
Automatic Reparameterisation of Probabilistic Programs
Maria I. Gorinova
Dave Moore
Matthew D. Hoffman
17
28
0
07 Jun 2019
A Condition Number for Hamiltonian Monte Carlo
I. Langmore
M. Dikovsky
S. Geraedts
Peter C. Norgaard
R. V. Behren
18
6
0
23 May 2019
Importance Sampling-based Transport Map Hamiltonian Monte Carlo for Bayesian Hierarchical Models
Kjartan Kloster Osmundsen
T. S. Kleppe
R. Liesenfeld
19
3
0
19 Dec 2018
Previous
1
2