ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.16653
8
36

Involutive MCMC: a Unifying Framework

30 June 2020
Kirill Neklyudov
Max Welling
Evgenii Egorov
Dmitry Vetrov
ArXivPDFHTML
Abstract

Markov Chain Monte Carlo (MCMC) is a computational approach to fundamental problems such as inference, integration, optimization, and simulation. The field has developed a broad spectrum of algorithms, varying in the way they are motivated, the way they are applied and how efficiently they sample. Despite all the differences, many of them share the same core principle, which we unify as the Involutive MCMC (iMCMC) framework. Building upon this, we describe a wide range of MCMC algorithms in terms of iMCMC, and formulate a number of "tricks" which one can use as design principles for developing new MCMC algorithms. Thus, iMCMC provides a unified view of many known MCMC algorithms, which facilitates the derivation of powerful extensions. We demonstrate the latter with two examples where we transform known reversible MCMC algorithms into more efficient irreversible ones.

View on arXiv
Comments on this paper