Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.03704
Cited By
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
9 March 2019
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport"
50 / 75 papers shown
Title
Efficiently Vectorized MCMC on Modern Accelerators
Hugh Dance
Pierre Glaser
Peter Orbanz
Ryan P. Adams
47
0
0
20 Mar 2025
Empirical evaluation of normalizing flows in Markov Chain Monte Carlo
David Nabergoj
Erik Štrumbelj
BDL
TPM
40
0
0
22 Dec 2024
Running Markov Chain Monte Carlo on Modern Hardware and Software
Pavel Sountsov
Colin Carroll
Matthew D. Hoffman
BDL
34
2
0
06 Nov 2024
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
26
0
0
31 Oct 2024
Hamiltonian Score Matching and Generative Flows
Peter Holderrieth
Yilun Xu
Tommi Jaakkola
26
0
0
27 Oct 2024
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Burkner
54
3
0
23 Aug 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
45
0
0
22 Jul 2024
Quasi-Bayes meets Vines
David Huk
Yuanhe Zhang
Mark Steel
Ritabrata Dutta
32
1
0
18 Jun 2024
Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps
Evgenii Egorov
Ricardo Valperga
E. Gavves
BDL
GAN
29
0
0
04 Jun 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
34
1
0
23 May 2024
Particle Denoising Diffusion Sampler
Angus Phillips
Hai-Dang Dau
M. Hutchinson
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
54
25
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
66
17
0
07 Feb 2024
Graph-accelerated Markov Chain Monte Carlo using Approximate Samples
Leo L. Duan
Anirban Bhattacharya
6
1
0
25 Jan 2024
Channelling Multimodality Through a Unimodalizing Transport: Warp-U Sampler and Stochastic Bridge Sampling
Fei Ding
David E. Jones
Shiyuan He
Xiao-Li Meng
OT
17
0
0
01 Jan 2024
Transition Path Sampling with Boltzmann Generator-based MCMC Moves
Michael Plainer
Hannes Stärk
Charlotte Bunne
Stephan Günnemann
20
5
0
08 Dec 2023
Quantifying the effectiveness of linear preconditioning in Markov chain Monte Carlo
Max Hird
Samuel Livingstone
20
5
0
08 Dec 2023
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
Yoshua Bengio
Y. Hezaveh
Laurence Perreault Levasseur
BDL
39
9
0
06 Dec 2023
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
31
2
0
02 Oct 2023
Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling
H. Christiansen
Federico Errica
Francesco Alesiani
40
6
0
24 Sep 2023
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
Kyle Cranmer
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
18
27
0
03 Sep 2023
Learning variational autoencoders via MCMC speed measures
Marcel Hirt
Vasileios Kreouzis
P. Dellaportas
BDL
DRL
16
2
0
26 Aug 2023
Field-Level Inference with Microcanonical Langevin Monte Carlo
Adrian E Bayer
U. Seljak
Chirag Modi
28
9
0
18 Jul 2023
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
13
2
0
01 Jun 2023
Normalizing flow sampling with Langevin dynamics in the latent space
Florentin Coeurdoux
N. Dobigeon
P. Chainais
DRL
13
7
0
20 May 2023
Efficient Multimodal Sampling via Tempered Distribution Flow
Yixuan Qiu
Xiao Wang
OT
34
2
0
08 Apr 2023
On Sampling with Approximate Transport Maps
Louis Grenioux
Alain Durmus
Eric Moulines
Marylou Gabrié
OT
22
15
0
09 Feb 2023
Automatically Marginalized MCMC in Probabilistic Programming
Jinlin Lai
Javier Burroni
Hui Guan
Daniel Sheldon
16
3
0
01 Feb 2023
Microcanonical Hamiltonian Monte Carlo
Jakob Robnik
G. Luca
E. Silverstein
U. Seljak
19
14
0
16 Dec 2022
Latent Space Diffusion Models of Cryo-EM Structures
Karsten Kreis
Tim Dockhorn
Zihao Li
Ellen D. Zhong
DiffM
27
15
0
25 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
24
33
0
14 Nov 2022
Transport Reversible Jump Proposals
L. Davies
Roberto Salomone
Matthew Sutton
Christopher C. Drovandi
BDL
19
1
0
22 Oct 2022
Transport Elliptical Slice Sampling
A. Cabezas
Christopher Nemeth
11
8
0
19 Oct 2022
Reconstructing the Universe with Variational self-Boosted Sampling
Chirag Modi
Yin Li
David M. Blei
11
8
0
28 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
40
6
0
15 Jun 2022
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
R. Grumitt
B. Dai
U. Seljak
BDL
24
12
0
27 May 2022
Principal Manifold Flows
Edmond Cunningham
Adam D. Cobb
Susmit Jha
DRL
11
7
0
14 Feb 2022
Transport Score Climbing: Variational Inference Using Forward KL and Adaptive Neural Transport
Liyi Zhang
David M. Blei
C. A. Naesseth
22
6
0
03 Feb 2022
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
13
101
0
30 Nov 2021
Bootstrap Your Flow
Laurence Illing Midgley
Vincent Stimper
G. Simm
José Miguel Hernández-Lobato
17
5
0
22 Nov 2021
Density Ratio Estimation via Infinitesimal Classification
Kristy Choi
Chenlin Meng
Yang Song
Stefano Ermon
14
38
0
22 Nov 2021
Local-Global MCMC kernels: the best of both worlds
S. Samsonov
E. Lagutin
Marylou Gabrié
Alain Durmus
A. Naumov
Eric Moulines
11
13
0
04 Nov 2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
Aram Galstyan
28
13
0
03 Nov 2021
Entropy-based adaptive Hamiltonian Monte Carlo
Marcel Hirt
Michalis K. Titsias
P. Dellaportas
BDL
29
7
0
27 Oct 2021
Adaptation of the Independent Metropolis-Hastings Sampler with Normalizing Flow Proposals
James A. Brofos
Marylou Gabrié
Marcus A. Brubaker
Roy R. Lederman
17
8
0
25 Oct 2021
Towards Understanding the Generative Capability of Adversarially Robust Classifiers
Yao Zhu
Jiacheng Ma
Jiacheng Sun
Zewei Chen
Rongxin Jiang
Zhenguo Li
AAML
13
21
0
20 Aug 2021
Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors
Dhruv V. Patel
Deep Ray
Assad A. Oberai
AI4CE
11
37
0
06 Jul 2021
Reparameterized Sampling for Generative Adversarial Networks
Yifei Wang
Yisen Wang
Jiansheng Yang
Zhouchen Lin
GAN
11
5
0
01 Jul 2021
Learning Equivariant Energy Based Models with Equivariant Stein Variational Gradient Descent
P. Jaini
Lars Holdijk
Max Welling
33
11
0
15 Jun 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
20
1
0
03 Jun 2021
Deep Learning Hamiltonian Monte Carlo
Sam Foreman
Xiao-Yong Jin
James C. Osborn
17
16
0
07 May 2021
1
2
Next