ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.03704
  4. Cited By
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport

NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport

9 March 2019
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
    BDL
ArXivPDFHTML

Papers citing "NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport"

50 / 75 papers shown
Title
Efficiently Vectorized MCMC on Modern Accelerators
Efficiently Vectorized MCMC on Modern Accelerators
Hugh Dance
Pierre Glaser
Peter Orbanz
Ryan P. Adams
47
0
0
20 Mar 2025
Empirical evaluation of normalizing flows in Markov Chain Monte Carlo
Empirical evaluation of normalizing flows in Markov Chain Monte Carlo
David Nabergoj
Erik Štrumbelj
BDL
TPM
40
0
0
22 Dec 2024
Running Markov Chain Monte Carlo on Modern Hardware and Software
Running Markov Chain Monte Carlo on Modern Hardware and Software
Pavel Sountsov
Colin Carroll
Matthew D. Hoffman
BDL
34
2
0
06 Nov 2024
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
26
0
0
31 Oct 2024
Hamiltonian Score Matching and Generative Flows
Hamiltonian Score Matching and Generative Flows
Peter Holderrieth
Yilun Xu
Tommi Jaakkola
26
0
0
27 Oct 2024
Amortized Bayesian Multilevel Models
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Burkner
54
3
0
23 Aug 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
45
0
0
22 Jul 2024
Quasi-Bayes meets Vines
Quasi-Bayes meets Vines
David Huk
Yuanhe Zhang
Mark Steel
Ritabrata Dutta
32
1
0
18 Jun 2024
Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps
Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps
Evgenii Egorov
Ricardo Valperga
E. Gavves
BDL
GAN
29
0
0
04 Jun 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing
  Flows
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
34
1
0
23 May 2024
Particle Denoising Diffusion Sampler
Particle Denoising Diffusion Sampler
Angus Phillips
Hai-Dang Dau
M. Hutchinson
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
54
25
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
66
17
0
07 Feb 2024
Graph-accelerated Markov Chain Monte Carlo using Approximate Samples
Graph-accelerated Markov Chain Monte Carlo using Approximate Samples
Leo L. Duan
Anirban Bhattacharya
6
1
0
25 Jan 2024
Channelling Multimodality Through a Unimodalizing Transport: Warp-U
  Sampler and Stochastic Bridge Sampling
Channelling Multimodality Through a Unimodalizing Transport: Warp-U Sampler and Stochastic Bridge Sampling
Fei Ding
David E. Jones
Shiyuan He
Xiao-Li Meng
OT
17
0
0
01 Jan 2024
Transition Path Sampling with Boltzmann Generator-based MCMC Moves
Transition Path Sampling with Boltzmann Generator-based MCMC Moves
Michael Plainer
Hannes Stärk
Charlotte Bunne
Stephan Günnemann
20
5
0
08 Dec 2023
Quantifying the effectiveness of linear preconditioning in Markov chain
  Monte Carlo
Quantifying the effectiveness of linear preconditioning in Markov chain Monte Carlo
Max Hird
Samuel Livingstone
20
5
0
08 Dec 2023
Improving Gradient-guided Nested Sampling for Posterior Inference
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
Yoshua Bengio
Y. Hezaveh
Laurence Perreault Levasseur
BDL
39
9
0
06 Dec 2023
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
31
2
0
02 Oct 2023
Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling
Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling
H. Christiansen
Federico Errica
Francesco Alesiani
40
6
0
24 Sep 2023
Advances in machine-learning-based sampling motivated by lattice quantum
  chromodynamics
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
Kyle Cranmer
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
18
27
0
03 Sep 2023
Learning variational autoencoders via MCMC speed measures
Learning variational autoencoders via MCMC speed measures
Marcel Hirt
Vasileios Kreouzis
P. Dellaportas
BDL
DRL
16
2
0
26 Aug 2023
Field-Level Inference with Microcanonical Langevin Monte Carlo
Field-Level Inference with Microcanonical Langevin Monte Carlo
Adrian E Bayer
U. Seljak
Chirag Modi
28
9
0
18 Jul 2023
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
13
2
0
01 Jun 2023
Normalizing flow sampling with Langevin dynamics in the latent space
Normalizing flow sampling with Langevin dynamics in the latent space
Florentin Coeurdoux
N. Dobigeon
P. Chainais
DRL
13
7
0
20 May 2023
Efficient Multimodal Sampling via Tempered Distribution Flow
Efficient Multimodal Sampling via Tempered Distribution Flow
Yixuan Qiu
Xiao Wang
OT
34
2
0
08 Apr 2023
On Sampling with Approximate Transport Maps
On Sampling with Approximate Transport Maps
Louis Grenioux
Alain Durmus
Eric Moulines
Marylou Gabrié
OT
22
15
0
09 Feb 2023
Automatically Marginalized MCMC in Probabilistic Programming
Automatically Marginalized MCMC in Probabilistic Programming
Jinlin Lai
Javier Burroni
Hui Guan
Daniel Sheldon
16
3
0
01 Feb 2023
Microcanonical Hamiltonian Monte Carlo
Microcanonical Hamiltonian Monte Carlo
Jakob Robnik
G. Luca
E. Silverstein
U. Seljak
19
14
0
16 Dec 2022
Latent Space Diffusion Models of Cryo-EM Structures
Latent Space Diffusion Models of Cryo-EM Structures
Karsten Kreis
Tim Dockhorn
Zihao Li
Ellen D. Zhong
DiffM
27
15
0
25 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
24
33
0
14 Nov 2022
Transport Reversible Jump Proposals
Transport Reversible Jump Proposals
L. Davies
Roberto Salomone
Matthew Sutton
Christopher C. Drovandi
BDL
19
1
0
22 Oct 2022
Transport Elliptical Slice Sampling
Transport Elliptical Slice Sampling
A. Cabezas
Christopher Nemeth
11
8
0
19 Oct 2022
Reconstructing the Universe with Variational self-Boosted Sampling
Reconstructing the Universe with Variational self-Boosted Sampling
Chirag Modi
Yin Li
David M. Blei
11
8
0
28 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and
  accelerated sampling
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
40
6
0
15 Jun 2022
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian
  Inference
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
R. Grumitt
B. Dai
U. Seljak
BDL
24
12
0
27 May 2022
Principal Manifold Flows
Principal Manifold Flows
Edmond Cunningham
Adam D. Cobb
Susmit Jha
DRL
11
7
0
14 Feb 2022
Transport Score Climbing: Variational Inference Using Forward KL and
  Adaptive Neural Transport
Transport Score Climbing: Variational Inference Using Forward KL and Adaptive Neural Transport
Liyi Zhang
David M. Blei
C. A. Naesseth
22
6
0
03 Feb 2022
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
13
101
0
30 Nov 2021
Bootstrap Your Flow
Bootstrap Your Flow
Laurence Illing Midgley
Vincent Stimper
G. Simm
José Miguel Hernández-Lobato
17
5
0
22 Nov 2021
Density Ratio Estimation via Infinitesimal Classification
Density Ratio Estimation via Infinitesimal Classification
Kristy Choi
Chenlin Meng
Yang Song
Stefano Ermon
14
38
0
22 Nov 2021
Local-Global MCMC kernels: the best of both worlds
Local-Global MCMC kernels: the best of both worlds
S. Samsonov
E. Lagutin
Marylou Gabrié
Alain Durmus
A. Naumov
Eric Moulines
11
13
0
04 Nov 2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
Aram Galstyan
28
13
0
03 Nov 2021
Entropy-based adaptive Hamiltonian Monte Carlo
Entropy-based adaptive Hamiltonian Monte Carlo
Marcel Hirt
Michalis K. Titsias
P. Dellaportas
BDL
29
7
0
27 Oct 2021
Adaptation of the Independent Metropolis-Hastings Sampler with
  Normalizing Flow Proposals
Adaptation of the Independent Metropolis-Hastings Sampler with Normalizing Flow Proposals
James A. Brofos
Marylou Gabrié
Marcus A. Brubaker
Roy R. Lederman
17
8
0
25 Oct 2021
Towards Understanding the Generative Capability of Adversarially Robust
  Classifiers
Towards Understanding the Generative Capability of Adversarially Robust Classifiers
Yao Zhu
Jiacheng Ma
Jiacheng Sun
Zewei Chen
Rongxin Jiang
Zhenguo Li
AAML
13
21
0
20 Aug 2021
Solution of Physics-based Bayesian Inverse Problems with Deep Generative
  Priors
Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors
Dhruv V. Patel
Deep Ray
Assad A. Oberai
AI4CE
11
37
0
06 Jul 2021
Reparameterized Sampling for Generative Adversarial Networks
Reparameterized Sampling for Generative Adversarial Networks
Yifei Wang
Yisen Wang
Jiansheng Yang
Zhouchen Lin
GAN
11
5
0
01 Jul 2021
Learning Equivariant Energy Based Models with Equivariant Stein
  Variational Gradient Descent
Learning Equivariant Energy Based Models with Equivariant Stein Variational Gradient Descent
P. Jaini
Lars Holdijk
Max Welling
33
11
0
15 Jun 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
20
1
0
03 Jun 2021
Deep Learning Hamiltonian Monte Carlo
Deep Learning Hamiltonian Monte Carlo
Sam Foreman
Xiao-Yong Jin
James C. Osborn
17
16
0
07 May 2021
12
Next