Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08584
Cited By
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
24 January 2019
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks"
50 / 239 papers shown
Title
On the Proof of Global Convergence of Gradient Descent for Deep ReLU Networks with Linear Widths
Quynh N. Nguyen
43
48
0
24 Jan 2021
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
36
21
0
13 Jan 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
R. L. Jin
39
3
0
12 Jan 2021
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks
Quynh N. Nguyen
Marco Mondelli
Guido Montúfar
25
81
0
21 Dec 2020
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
60
355
0
17 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
257
0
18 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
39
18
0
09 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
44
24
0
27 Oct 2020
A Dynamical View on Optimization Algorithms of Overparameterized Neural Networks
Zhiqi Bu
Shiyun Xu
Kan Chen
33
17
0
25 Oct 2020
Continual Learning in Low-rank Orthogonal Subspaces
Arslan Chaudhry
Naeemullah Khan
P. Dokania
Philip Torr
CLL
33
114
0
22 Oct 2020
Deep Learning is Singular, and That's Good
Daniel Murfet
Susan Wei
Biwei Huang
Hui Li
Jesse Gell-Redman
T. Quella
UQCV
24
26
0
22 Oct 2020
Knowledge Distillation in Wide Neural Networks: Risk Bound, Data Efficiency and Imperfect Teacher
Guangda Ji
Zhanxing Zhu
59
42
0
20 Oct 2020
For self-supervised learning, Rationality implies generalization, provably
Yamini Bansal
Gal Kaplun
Boaz Barak
OOD
SSL
58
22
0
16 Oct 2020
Regularizing Neural Networks via Adversarial Model Perturbation
Yaowei Zheng
Richong Zhang
Yongyi Mao
AAML
30
95
0
10 Oct 2020
On the linearity of large non-linear models: when and why the tangent kernel is constant
Chaoyue Liu
Libin Zhu
M. Belkin
21
140
0
02 Oct 2020
Neural Thompson Sampling
Weitong Zhang
Dongruo Zhou
Lihong Li
Quanquan Gu
28
114
0
02 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
28
86
0
30 Sep 2020
Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot
Jingtong Su
Yihang Chen
Tianle Cai
Tianhao Wu
Ruiqi Gao
Liwei Wang
J. Lee
14
85
0
22 Sep 2020
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Lin Chen
Sheng Xu
30
93
0
22 Sep 2020
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
21
42
0
21 Sep 2020
Predicting Training Time Without Training
L. Zancato
Alessandro Achille
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
26
24
0
28 Aug 2020
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
28
61
0
03 Aug 2020
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Zuyue Fu
Zhuoran Yang
Zhaoran Wang
15
42
0
02 Aug 2020
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
49
95
0
25 Jul 2020
Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
E. Moroshko
Suriya Gunasekar
Blake E. Woodworth
J. Lee
Nathan Srebro
Daniel Soudry
35
85
0
13 Jul 2020
Provably Efficient Neural Estimation of Structural Equation Model: An Adversarial Approach
Luofeng Liao
You-Lin Chen
Zhuoran Yang
Bo Dai
Zhaoran Wang
Mladen Kolar
30
32
0
02 Jul 2020
A Revision of Neural Tangent Kernel-based Approaches for Neural Networks
Kyungsu Kim
A. Lozano
Eunho Yang
AAML
35
0
0
02 Jul 2020
Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent
Mehdi Abbana Bennani
Thang Doan
Masashi Sugiyama
CLL
50
61
0
21 Jun 2020
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning
Lingxiao Wang
Zhuoran Yang
Zhaoran Wang
27
26
0
21 Jun 2020
Training (Overparametrized) Neural Networks in Near-Linear Time
Jan van den Brand
Binghui Peng
Zhao Song
Omri Weinstein
ODL
29
82
0
20 Jun 2020
An analytic theory of shallow networks dynamics for hinge loss classification
Franco Pellegrini
Giulio Biroli
35
19
0
19 Jun 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
28
3
0
19 Jun 2020
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
60
2,344
0
18 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks
Kenta Oono
Taiji Suzuki
AI4CE
37
31
0
15 Jun 2020
Global Attention Improves Graph Networks Generalization
Omri Puny
Heli Ben-Hamu
Y. Lipman
27
22
0
14 Jun 2020
Non-convergence of stochastic gradient descent in the training of deep neural networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
14
37
0
12 Jun 2020
H3DNet: 3D Object Detection Using Hybrid Geometric Primitives
Zaiwei Zhang
Bo Sun
Haitao Yang
Qi-Xing Huang
3DPC
20
195
0
10 Jun 2020
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang
Qi Cai
Zhuoran Yang
Yongxin Chen
Zhaoran Wang
OOD
MLT
114
11
0
08 Jun 2020
Speedy Performance Estimation for Neural Architecture Search
Binxin Ru
Clare Lyle
Lisa Schut
M. Fil
Mark van der Wilk
Y. Gal
18
36
0
08 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
37
147
0
20 May 2020
Learning the gravitational force law and other analytic functions
Atish Agarwala
Abhimanyu Das
Rina Panigrahy
Qiuyi Zhang
MLT
16
0
0
15 May 2020
Compressive sensing with un-trained neural networks: Gradient descent finds the smoothest approximation
Reinhard Heckel
Mahdi Soltanolkotabi
8
79
0
07 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Analysis of Knowledge Transfer in Kernel Regime
Arman Rahbar
Ashkan Panahi
Chiranjib Bhattacharyya
Devdatt Dubhashi
M. Chehreghani
23
3
0
30 Mar 2020
Frequency Bias in Neural Networks for Input of Non-Uniform Density
Ronen Basri
Meirav Galun
Amnon Geifman
David Jacobs
Yoni Kasten
S. Kritchman
39
183
0
10 Mar 2020
Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation
Arnulf Jentzen
Timo Welti
22
15
0
03 Mar 2020
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks
Chaoyue Liu
Libin Zhu
M. Belkin
ODL
17
247
0
29 Feb 2020
Previous
1
2
3
4
5
Next