ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.08584
  4. Cited By
Fine-Grained Analysis of Optimization and Generalization for
  Overparameterized Two-Layer Neural Networks

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

24 January 2019
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
    MLT
ArXivPDFHTML

Papers citing "Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks"

50 / 239 papers shown
Title
Neural Multivariate Regression: Qualitative Insights from the Unconstrained Feature Model
Neural Multivariate Regression: Qualitative Insights from the Unconstrained Feature Model
George Andriopoulos
Soyuj Jung Basnet
Juan Guevara
Li Guo
Keith Ross
30
0
0
14 May 2025
Mallows-type model averaging: Non-asymptotic analysis and all-subset combination
Mallows-type model averaging: Non-asymptotic analysis and all-subset combination
Jingfu Peng
MoMe
37
0
0
05 May 2025
A Comprehensive Survey of Synthetic Tabular Data Generation
A Comprehensive Survey of Synthetic Tabular Data Generation
Ruxue Shi
Yili Wang
Mengnan Du
Xu Shen
Xin Wang
49
2
0
23 Apr 2025
Explainable Neural Networks with Guarantees: A Sparse Estimation Approach
Explainable Neural Networks with Guarantees: A Sparse Estimation Approach
Antoine Ledent
Peng Liu
FAtt
109
0
0
20 Feb 2025
Feature Learning Beyond the Edge of Stability
Feature Learning Beyond the Edge of Stability
Dávid Terjék
MLT
46
0
0
18 Feb 2025
SNeRV: Spectra-preserving Neural Representation for Video
SNeRV: Spectra-preserving Neural Representation for Video
Jina Kim
Jihoo Lee
Je-Won Kang
43
3
0
03 Jan 2025
Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
H. Bui
Enrique Mallada
Anqi Liu
144
0
0
08 Nov 2024
Towards Understanding Why FixMatch Generalizes Better Than Supervised Learning
Towards Understanding Why FixMatch Generalizes Better Than Supervised Learning
Jingyang Li
Jiachun Pan
Vincent Y. F. Tan
Kim-Chuan Toh
Pan Zhou
AAML
MLT
48
0
0
15 Oct 2024
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Binghui Li
Yuanzhi Li
OOD
33
2
0
11 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
63
0
0
08 Oct 2024
Tuning Frequency Bias of State Space Models
Tuning Frequency Bias of State Space Models
Annan Yu
Dongwei Lyu
S. H. Lim
Michael W. Mahoney
N. Benjamin Erichson
47
3
0
02 Oct 2024
Optimal Kernel Quantile Learning with Random Features
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
51
0
0
24 Aug 2024
Many Perception Tasks are Highly Redundant Functions of their Input Data
Many Perception Tasks are Highly Redundant Functions of their Input Data
Rahul Ramesh
Anthony Bisulco
Ronald W. DiTullio
Linran Wei
Vijay Balasubramanian
Kostas Daniilidis
Pratik Chaudhari
44
2
0
18 Jul 2024
Loss Gradient Gaussian Width based Generalization and Optimization Guarantees
Loss Gradient Gaussian Width based Generalization and Optimization Guarantees
A. Banerjee
Qiaobo Li
Yingxue Zhou
52
0
0
11 Jun 2024
On the Rashomon ratio of infinite hypothesis sets
On the Rashomon ratio of infinite hypothesis sets
Evzenie Coupkova
Mireille Boutin
37
1
0
27 Apr 2024
Implicit Bias of AdamW: $\ell_\infty$ Norm Constrained Optimization
Implicit Bias of AdamW: ℓ∞\ell_\inftyℓ∞​ Norm Constrained Optimization
Shuo Xie
Zhiyuan Li
OffRL
50
13
0
05 Apr 2024
Grounding and Enhancing Grid-based Models for Neural Fields
Grounding and Enhancing Grid-based Models for Neural Fields
Zelin Zhao
Fenglei Fan
Wenlong Liao
Junchi Yan
39
5
0
29 Mar 2024
NTK-Guided Few-Shot Class Incremental Learning
NTK-Guided Few-Shot Class Incremental Learning
Jingren Liu
Zhong Ji
Yanwei Pang
YunLong Yu
CLL
42
3
0
19 Mar 2024
How does promoting the minority fraction affect generalization? A
  theoretical study of the one-hidden-layer neural network on group imbalance
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
Hongkang Li
Shuai Zhang
Yihua Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
41
4
0
12 Mar 2024
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
48
0
0
08 Feb 2024
Non-convergence to global minimizers for Adam and stochastic gradient
  descent optimization and constructions of local minimizers in the training of
  artificial neural networks
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
Arnulf Jentzen
Adrian Riekert
38
4
0
07 Feb 2024
Characterizing Overfitting in Kernel Ridgeless Regression Through the
  Eigenspectrum
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum
Tin Sum Cheng
Aurelien Lucchi
Anastasis Kratsios
David Belius
40
8
0
02 Feb 2024
\emph{Lifted} RDT based capacity analysis of the 1-hidden layer treelike
  \emph{sign} perceptrons neural networks
\emph{Lifted} RDT based capacity analysis of the 1-hidden layer treelike \emph{sign} perceptrons neural networks
M. Stojnic
27
1
0
13 Dec 2023
Capacity of the treelike sign perceptrons neural networks with one
  hidden layer -- RDT based upper bounds
Capacity of the treelike sign perceptrons neural networks with one hidden layer -- RDT based upper bounds
M. Stojnic
21
4
0
13 Dec 2023
Gradual Domain Adaptation: Theory and Algorithms
Gradual Domain Adaptation: Theory and Algorithms
Yifei He
Haoxiang Wang
Bo Li
Han Zhao
CLL
52
6
0
20 Oct 2023
Gradient constrained sharpness-aware prompt learning for vision-language
  models
Gradient constrained sharpness-aware prompt learning for vision-language models
Liangchen Liu
Nannan Wang
Dawei Zhou
Xinbo Gao
Decheng Liu
Xi Yang
Tongliang Liu
VLM
33
2
0
14 Sep 2023
How to Protect Copyright Data in Optimization of Large Language Models?
How to Protect Copyright Data in Optimization of Large Language Models?
T. Chu
Zhao Song
Chiwun Yang
40
29
0
23 Aug 2023
Understanding Deep Neural Networks via Linear Separability of Hidden
  Layers
Understanding Deep Neural Networks via Linear Separability of Hidden Layers
Chao Zhang
Xinyuan Chen
Wensheng Li
Lixue Liu
Wei Wu
Dacheng Tao
28
3
0
26 Jul 2023
Efficient SGD Neural Network Training via Sublinear Activated Neuron
  Identification
Efficient SGD Neural Network Training via Sublinear Activated Neuron Identification
Lianke Qin
Zhao Song
Yuanyuan Yang
25
9
0
13 Jul 2023
Training-Free Neural Active Learning with Initialization-Robustness
  Guarantees
Training-Free Neural Active Learning with Initialization-Robustness Guarantees
Apivich Hemachandra
Zhongxiang Dai
Jasraj Singh
See-Kiong Ng
K. H. Low
AAML
36
6
0
07 Jun 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural
  Networks
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
29
4
0
26 May 2023
Fast Convergence in Learning Two-Layer Neural Networks with Separable
  Data
Fast Convergence in Learning Two-Layer Neural Networks with Separable Data
Hossein Taheri
Christos Thrampoulidis
MLT
16
3
0
22 May 2023
Tight conditions for when the NTK approximation is valid
Tight conditions for when the NTK approximation is valid
Enric Boix-Adserà
Etai Littwin
30
0
0
22 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
44
13
0
11 May 2023
On the Eigenvalue Decay Rates of a Class of Neural-Network Related
  Kernel Functions Defined on General Domains
On the Eigenvalue Decay Rates of a Class of Neural-Network Related Kernel Functions Defined on General Domains
Yicheng Li
Zixiong Yu
Y. Cotronis
Qian Lin
55
13
0
04 May 2023
Wide neural networks: From non-gaussian random fields at initialization
  to the NTK geometry of training
Wide neural networks: From non-gaussian random fields at initialization to the NTK geometry of training
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
AI4CE
26
1
0
06 Apr 2023
On the Stepwise Nature of Self-Supervised Learning
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
37
30
0
27 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher
  Framework
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
46
0
0
24 Mar 2023
Learning Fractals by Gradient Descent
Learning Fractals by Gradient Descent
Cheng-Hao Tu
Hong-You Chen
David Carlyn
Wei-Lun Chao
23
2
0
14 Mar 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for
  Learning a Single Neuron
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
37
16
0
20 Feb 2023
Reinforcement Learning with Function Approximation: From Linear to
  Nonlinear
Reinforcement Learning with Function Approximation: From Linear to Nonlinear
Jihao Long
Jiequn Han
27
5
0
20 Feb 2023
A Theoretical Understanding of Shallow Vision Transformers: Learning,
  Generalization, and Sample Complexity
A Theoretical Understanding of Shallow Vision Transformers: Learning, Generalization, and Sample Complexity
Hongkang Li
Hao Wu
Sijia Liu
Pin-Yu Chen
ViT
MLT
37
57
0
12 Feb 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features
  and Neural Tangent Kernels
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
40
10
0
03 Feb 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
64
2
0
02 Feb 2023
Width and Depth Limits Commute in Residual Networks
Width and Depth Limits Commute in Residual Networks
Soufiane Hayou
Greg Yang
44
14
0
01 Feb 2023
Supervision Complexity and its Role in Knowledge Distillation
Supervision Complexity and its Role in Knowledge Distillation
Hrayr Harutyunyan
A. S. Rawat
A. Menon
Seungyeon Kim
Surinder Kumar
30
12
0
28 Jan 2023
ZiCo: Zero-shot NAS via Inverse Coefficient of Variation on Gradients
ZiCo: Zero-shot NAS via Inverse Coefficient of Variation on Gradients
Guihong Li
Yuedong Yang
Kartikeya Bhardwaj
R. Marculescu
36
61
0
26 Jan 2023
Convergence beyond the over-parameterized regime using Rayleigh
  quotients
Convergence beyond the over-parameterized regime using Rayleigh quotients
David A. R. Robin
Kevin Scaman
Marc Lelarge
27
3
0
19 Jan 2023
An Analysis of Attention via the Lens of Exchangeability and Latent
  Variable Models
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
53
11
0
30 Dec 2022
Learning Lipschitz Functions by GD-trained Shallow Overparameterized
  ReLU Neural Networks
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
Ilja Kuzborskij
Csaba Szepesvári
21
4
0
28 Dec 2022
12345
Next